Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 170(1-4): 21-6, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26163384

ABSTRACT

In the context of the decrease in the eye lens dose limit for occupational exposure to 20 mSv per year stated by the recent revision of the European Basic Safety Standards Directive 2013/59/EURATOM, the European Radiation Dosimetry Group (EURADOS) has organised in 2014, for the first time, an intercomparison exercise for eye lens dosemeters. The main objective was to assess the capabilities of the passive eye lens dosemeters currently in use in Europe for occupational monitoring in medical fields. A total of 20 European individual monitoring services from 15 different countries have participated. The dosemeters provided by the participants were all composed of thermoluminescent detectors, of various types and designs. The irradiations were carried out with several photon fields chosen to cover the energy and angle ranges encountered in medical workplace. Participants were asked to report the doses in terms of Hp(3) using their routine protocol. The results provided by each participant were compared with the reference delivered doses. All the results were anonymously analysed. Results are globally satisfactory since, among the 20 participants, 17 were able to provide 90 % of their response in accordance with the ISO 14146 standard requirements.


Subject(s)
Lens, Crystalline/radiation effects , Occupational Exposure/analysis , Radiation Dosage , Radiation Dosimeters , Radiation Monitoring/instrumentation , Radiation Protection/methods , Calibration , Europe , European Union , Humans , Photons , Radiation Monitoring/methods , Radiation Protection/instrumentation
2.
Phys Med Biol ; 58(9): 2787-806, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23563051

ABSTRACT

Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10). The acceleration potentials of the six beams studied are between 80 and 300 kV with half-value layers between 3.01 mm of aluminum and 3.40 mm of copper. A difference between the two methods smaller than 2.1% was reported. The standard uncertainty of water calorimetry being below 0.8%, and the one associated with the values from protocols being around 2.5%, the results are in good agreement. The calibration coefficients of some ionization chambers in terms of absorbed dose to water, established by application of calorimetry and air-kerma based dosimetry protocols, were also compared. The best agreement with the calibration coefficients established by water calorimetry was found for those established with the AAPM TG-61 protocol.


Subject(s)
Calorimetry/standards , Internationality , Radiation Dosage , Water , Calibration , Reference Standards , Uncertainty , X-Rays
3.
Phys Med Biol ; 58(9): 2769-86, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23562978

ABSTRACT

Water calorimeters are used to establish absorbed dose standards in several national metrology laboratories involved in ionizing radiation dosimetry. These calorimeters have been first used in high-energy photons of (60)Co or accelerator beams, where the depth of measurement in water is large (5 or 10 cm). The LNE-LNHB laboratory has developed a specific calorimeter which makes measurements at low depth in water (down to 0.5 cm) easier, in order to fulfil the reference conditions required by the international dosimetry protocols for medium-energy x-rays. This new calorimeter was first used to measure the absorbed dose rate in water at a depth of 2 cm for six medium-energy x-ray reference beams with a tube potential from 80 to 300 kV. The relative combined standard uncertainty obtained on the absorbed dose rate to water is lower than 0.8%. An overview of the design of the calorimeter is given, followed by a detailed description of the calculation of the correction factors and the calorimetric measurements.


Subject(s)
Calorimetry/instrumentation , Radiation Dosage , Water , Hot Temperature , Monte Carlo Method , X-Rays
4.
Radiat Prot Dosimetry ; 144(1-4): 473-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21335629

ABSTRACT

The ORAMED (Optimization of RAdiation protection for MEDical staff) project is funded by EU-EURATOM within the 7° Framework Programme. Task 2 of the project is devoted to study the dose to the eye lens. The study was subdivided into various topics, starting from a critical revision of the operational quantity H(p)(3), with the corresponding proposal of a cylindrical phantom simulating as best as possible the head in which the eyes are located, the production of a complete set of air kerma to dose equivalent conversion coefficients for photons from 10 keV to 10 MeV, and finally, the optimisation of the design of a personal dosemeter well suited to respond in terms of H(p)(3). The paper presents some preliminary results.


Subject(s)
Lens, Crystalline/radiation effects , Occupational Exposure/prevention & control , Radiation Monitoring/instrumentation , Radiation Protection/instrumentation , Radiometry/instrumentation , Air , Algorithms , Calibration , Equipment Design , Head/radiation effects , Humans , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiation Monitoring/methods , Radiation Protection/methods , Radiometry/methods , Scattering, Radiation
5.
Radiat Prot Dosimetry ; 144(1-4): 187-91, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21224262

ABSTRACT

Recent epidemiological studies suggest a rather low-dose threshold (<0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimised and current dose limits for the eye lens may be reduced in the future. ICRP Publication 103 on H(p)(d), in §(136), reads that '… a depth d = 3 mm has been proposed for the rare case of monitoring the dose to the lens of the eye. In practice, however, H(p)(3) has rarely been monitored and H(p)(0.07) can be used for the same monitoring purpose… '. As recommended on the EU 'Technical recommendations for monitoring individuals occupationally exposed to external radiation', a test on the ENEA TL extremity dosemeter is herein reported. The results within the actual EU founded Optimization of RAdiation protection for MEDical staff (ORAMED) Project, whose WP2 is aimed at the quantity H(p)(3) and eye lens dosimetry in practice, are taken into account. The paper summarises the main aspects of the study carried out at ENEA-Radiation Protection Institute (Bologna, Italy) to provide practical solutions (in the use and the design) to evaluate the response of the ENEA TL extremity dosemeter in terms of H(p)(3).


Subject(s)
Copper/analysis , Fluorides/analysis , Lithium Compounds/analysis , Magnesium/analysis , Phosphorus/analysis , Radiation Monitoring/instrumentation , Radiation Protection/instrumentation , Radiometry/instrumentation , Calibration , Equipment Design , Europe , Guidelines as Topic , Humans , Materials Testing , Phantoms, Imaging , Radiation Monitoring/methods , Radiation Protection/methods , Radiometry/methods , Skin/radiation effects
6.
Radiat Prot Dosimetry ; 144(1-4): 453-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21186215

ABSTRACT

The work package 3 of the ORAMED project, Collaborative Project (2008-11) supported by the European Commission within its seventh Framework Programme, is focused on the optimisation of the use of active personal dosemeters (APDs) in interventional radiology and cardiology (IR/IC). Indeed, a lack of appropriate APD devices is identified for these specific fields. Few devices can detect low-energy X rays (20-100 keV), and none of them are specifically designed for working in pulsed radiation fields. The work presented in this paper consists in studying the behaviour of some selected APDs deemed suitable for application in IR/IC. For this purpose, measurements under laboratory conditions, both with continuous and pulsed X-ray beams, and tests in real conditions on site in different European hospitals were performed. This study highlights the limitations of APDs for this application and the need of improving the APD technology so as to fulfil all needs in the IR/IC field.


Subject(s)
Cardiology , Occupational Exposure/prevention & control , Radiation Monitoring/instrumentation , Radiation Protection/instrumentation , Radiology, Interventional , Radiometry/instrumentation , Equipment Design , Europe , Hospitals , Humans , Laboratories , Monte Carlo Method , Protective Devices , Radiation Monitoring/methods , Radiation Protection/methods , Radiation, Ionizing , Radiometry/methods , Workforce , X-Rays
7.
Radiat Prot Dosimetry ; 131(1): 67-72, 2008.
Article in English | MEDLINE | ID: mdl-18757894

ABSTRACT

An intercomparison of ring dosemeters has been organised with the aim of assessing the technical capabilities of available extremity dosemeters and focusing on their performance at clinical workplaces with potentially high extremity doses. Twenty-four services from 16 countries participated in the intercomparison. The dosemeters were exposed to reference photon ((137)Cs) and beta ((147)Pm, (85)Kr and (90)Sr/(90)Y) fields together with fields representing realistic exposure situations in interventional radiology (direct and scattered radiation) and nuclear medicine ((99 m)Tc and (18)F). It has been found that most dosemeters provided satisfactory measurements of H(p)(0.07) for photon radiation, both in reference and realistic fields. However, only four dosemeters fulfilled the established requirements for all radiation qualities. The main difficulties were found for the measurement of low-energy beta radiation. Finally, the results also showed a general under-response of detectors to (18)F, which was attributed to the difficulties of the dosimetric systems to measure the positron contribution to the dose.


Subject(s)
Occupational Exposure , Radiometry/instrumentation , Beta Particles , Humans , Photons , Radiation Monitoring , Scattering, Radiation
8.
Radiat Prot Dosimetry ; 131(1): 87-92, 2008.
Article in English | MEDLINE | ID: mdl-18757898

ABSTRACT

An overview of the use of active personal dosemeters (APD) in interventional radiology is presented. It is based on the work done by the working package 7 of the CONRAD coordinated action supported by the EC within the frame of the 6th FP. This study was done in collaboration with the working package 4 of CONRAD to deal with the calculations required for studying the new calibration facility. The main requirements of the standard for the APD and the difficulties caused by the use of pulsed radiations are presented through the results of an intercomparison organised in a realistic calibration facility similar to the workplace situation in interventional radiology. The main characteristics of this facility are presented.


Subject(s)
Occupational Exposure , Radiation Monitoring/instrumentation , Radiology, Interventional , Radiometry/instrumentation , Calibration , Humans , Models, Theoretical , Monte Carlo Method , Phantoms, Imaging , Photons , Radiation Monitoring/methods , Radiometry/methods
9.
Radiat Prot Dosimetry ; 108(1): 33-45, 2004.
Article in English | MEDLINE | ID: mdl-14974603

ABSTRACT

The effect of different X ray radiation qualities on the calibration of mammographic dosemeters was investigated within the framework of a EUROMET (European Collaboration in Measurement Standards) project. The calibration coefficients for two ionization chambers and two semiconductor detectors were established in 13 dosimetry calibration laboratories for radiation qualities used in mammography. They were compared with coefficients for other radiation qualities, including those defined in ISO 4037-1, with first half value layers in the mammographic range. The results indicate that the choice of the radiation quality is not crucial for instruments with a small energy dependence of the response. However, the radiation quality has to be chosen carefully if instruments with a marked dependence of their response to the radiation energy are calibrated.


Subject(s)
Mammography/instrumentation , Radiometry/instrumentation , Calibration/standards , Female , Humans , Mammography/standards , Radiation Dosage , Radiography , Radiometry/standards , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...