Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cancer Discov ; 13(8): 1826-1843, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37449843

ABSTRACT

Germline BRCA-associated pancreatic ductal adenocarcinoma (glBRCA PDAC) tumors are susceptible to platinum and PARP inhibition. The clinical outcomes of 125 patients with glBRCA PDAC were stratified based on the spectrum of response to platinum/PARP inhibition: (i) refractory [overall survival (OS) <6 months], (ii) durable response followed by acquired resistance (OS <36 months), and (iii) long-term responders (OS >36 months). Patient-derived xenografts (PDX) were generated from 25 patients with glBRCA PDAC at different clinical time points. Response to platinum/PARP inhibition in vivo and ex vivo culture (EVOC) correlated with clinical response. We deciphered the mechanisms of resistance in glBRCA PDAC and identified homologous recombination (HR) proficiency and secondary mutations restoring partial functionality as the most dominant resistant mechanism. Yet, a subset of HR-deficient (HRD) patients demonstrated clinical resistance. Their tumors displayed basal-like molecular subtype and were more aneuploid. Tumor mutational burden was high in HRD PDAC and significantly higher in tumors with secondary mutations. Anti-PD-1 attenuated tumor growth in a novel humanized glBRCA PDAC PDX model. This work demonstrates the utility of preclinical models, including EVOC, to predict the response of glBRCA PDAC to treatment, which has the potential to inform time-sensitive medical decisions. SIGNIFICANCE: glBRCA PDAC has a favorable response to platinum/PARP inhibition. However, most patients develop resistance. Additional treatment options for this unique subpopulation are needed. We generated model systems in PDXs and an ex vivo system (EVOC) that faithfully recapitulate these specific clinical scenarios as a platform to investigate the mechanisms of resistance for further drug development. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Platinum/pharmacology , Platinum/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Mutation , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms
2.
J Gastrointest Oncol ; 14(1): 379-389, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36915452

ABSTRACT

Background: Cholangiocarcinoma (CCA) is a molecularly heterogenous disease that is often fatal. Whole genome sequencing (WGS) can provide additional knowledge of mutational spectra compared with panel sequencing. We describe the molecular landscape of CCA using whole-genome sequencing and compare the mutational landscape between short-term and long-term survivors. Methods: We explored molecular differences between short-term and long-term survivors by performing WGS on 20 patient samples from our biliary tract cancer database. Short-term survivors were enriched for cases with underlying primary sclerosing cholangitis (PSC) and patients with cirrhosis. All samples underwent tumour epithelial enrichment using laser capture microdissection (LCM). Results: Dominant single base substitution (SBS) signatures across the cohort included SBS1 and SBS5, with the latter more prevalent in long-term survivors. SBS17 was evident in 3 cases, all of whom had underlying ulcerative colitis (UC) with PSC. Additional rare signatures included SBS3 in a patient treated for prior mantle cell lymphoma and SBS26/SBS6 in a patient with a tumor mutational burden of 33 mutations/Mb and a pathogenic MLH1 germline mutation. Somatic TP53 inactivating mutations were present in 8/10 (80%) short-term survivors and in none of the long-term survivors. Additional mutations occurred in KRAS, SMAD4, CDKN2A, and chromatin remodelling genes. The long-term survivor group harboured predicted fusions in FGFR (n=2) and pathogenic mutations in BRAF and IDH1 (n=2). Conclusions: TP53 alterations are associated with poor outcomes in patients with CCA. Patients with underlying inflammatory/autoimmune conditions may be enriched for unique tumour mutational signatures.

3.
Clin Cancer Res ; 28(23): 5115-5120, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36222851

ABSTRACT

PURPOSE: Modified FOLFIRINOX (mFFX) and gemcitabine/nab-paclitaxel (GnP) remain standard first-line options for patients with advanced pancreatic ductal adenocarcinoma (PDAC). Human equilibrative nucleoside transporter 1 (hENT1) was hypothesized to be a biomarker of gemcitabine in the adjuvant setting, with conflicting results. In this study, we explore hENT1 mRNA expression as a predictive biomarker in advanced PDAC. EXPERIMENTAL DESIGN: COMPASS was a prospective observational trial of patients with advanced PDAC. A biopsy was required prior to initiating chemotherapy, as determined by treating physician. Biopsies underwent laser capture microdissection prior to whole genome and RNA sequencing. The cut-off thresholds for hENT1 expression were determined using the maximal χ2 statistic. RESULTS: 253 patients were included in the analyses with a median follow-up of 32 months, with 138 patients receiving mFFX and 92 receiving GnP. In the intention to treat population, median overall survival (OS) was 10.0 months in hENT1high versus 7.9 months in hENT1low (P = 0.02). In patients receiving mFFX, there was no difference in overall response rate (ORR; 35% vs. 28%, P = 0.56) or median OS (10.6 vs. 10.5 months, P = 0.45). However, in patients treated with GnP, the ORR was significantly higher in hENT1high compared with hENT1low tumors (43% vs. 21%, P = 0.038). Median OS in this GnP-treated cohort was 10.6 months in hENT1high versus 6.7 months hENT1low (P < 0.001). In an interaction analysis, hENT1 was predictive of treatment response to GnP (interaction P = 0.002). CONCLUSIONS: In advanced PDAC, hENT1 mRNA expression predicts ORR and OS in patients receiving GnP.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Equilibrative Nucleoside Transporter 1/genetics , Equilibrative Nucleoside Transporter 1/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , RNA, Messenger , Gemcitabine , Pancreatic Neoplasms
4.
Nat Commun ; 13(1): 5941, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209277

ABSTRACT

Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events.


Subject(s)
Adenocarcinoma , Bile Duct Neoplasms , Carcinoma, Pancreatic Ductal , Cholangiocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/pathology , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Carcinoma, Pancreatic Ductal/pathology , Cholangiocarcinoma/genetics , Humans , Mutation , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/genetics , Pancreatic Neoplasms
6.
J Natl Compr Canc Netw ; 20(6): 663-673.e12, 2022 06.
Article in English | MEDLINE | ID: mdl-35714671

ABSTRACT

BACKGROUND: Individuals with a family history of pancreatic adenocarcinoma (PC) or with a germline mutation in a PC susceptibility gene are at increased risk of developing PC. These high-risk individuals (HRIs) may benefit from PC surveillance. METHODS: A PC surveillance program was developed to evaluate the detection of premalignant lesions and early-stage PCs using biannual imaging and to determine whether locally advanced or metastatic PCs develop despite biannual surveillance. From January 2013 to April 2020, asymptomatic HRIs were enrolled and followed with alternating MRI and endoscopic ultrasound every 6 months. RESULTS: Of 75 HRIs, 43 (57.3%) had a germline mutation in a PC susceptibility gene and 32 (42.7%) had a familial pancreatic cancer (FPC) pedigree. Branch-duct intraductal papillary mucinous neoplasms (BD-IPMNs) were identified in 26 individuals (34.7%), but only 2 developed progressive lesions. One patient with Peutz-Jeghers syndrome (PJS) developed locally advanced PC arising from a BD-IPMN. Whole-genome sequencing of this patient's PC and of a second patient with PJS-associated PC from the same kindred revealed biallelic inactivation of STK11 in a KRAS-independent manner. A review of 3,853 patients from 2 PC registries identified an additional patient with PJS-associated PC. All 3 patients with PJS developed advanced PC consistent with the malignant transformation of an underlying BD-IPMN in <6 months. The other surveillance patient with a progressive lesion had FPC and underwent resection of a mixed-type IPMN that harbored polyclonal KRAS mutations. CONCLUSIONS: PC surveillance identifies a high prevalence of BD-IPMNs in HRIs. Patients with PJS with BD-IPMNs may be at risk for accelerated malignant transformation.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Carcinoma , Carcinoma, Pancreatic Ductal/pathology , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Syndrome , Pancreatic Neoplasms
7.
Front Oncol ; 12: 860767, 2022.
Article in English | MEDLINE | ID: mdl-35547873

ABSTRACT

The immune contexture of pancreatic ductal adenocarcinoma (PDAC) is generally immunosuppressive. A role for immune checkpoint inhibitors (ICIs) in PDAC has only been demonstrated for the rare and hypermutated mismatch repair (MMR) deficient (MMR-d) subtype. Homologous recombination repair (HR) deficient (HR-d) PDAC is more prevalent and may encompass up to 20% of PDAC. Its genomic instability may promote a T-cell mediated anti-tumor response with therapeutic sensitivity to ICIs. To investigate the immunogenicity of HR-d PDAC, we used multiplex immunohistochemistry (IHC) to compare the density and spatial distribution of CD8+ cytotoxic T-cells, FOXP3+ regulatory T-cells (Tregs), and CD68+ tumor-associated macrophages (TAMs) in HR-d versus HR/MMR-intact PDAC. We also evaluated the IHC positivity of programmed death-ligand 1 (PD-L1) across the subgroups. 192 tumors were evaluated and classified as HR/MMR-intact (n=166), HR-d (n=25) or MMR-d (n=1) based on germline testing and tumor molecular hallmarks. Intra-tumoral CD8+ T-cell infiltration was higher in HR-d versus HR/MMR-intact PDAC (p<0.0001), while CD8+ T-cell densities in the peri-tumoral and stromal regions were similar in both groups. HR-d PDAC also displayed increased intra-tumoral FOXP3+ Tregs (p=0.049) and had a higher CD8+:FOXP3+ ratio (p=0.023). CD68+ TAM expression was similar in HR-d and HR/MMR-intact PDAC. Finally, 6 of the 25 HR-d cases showed a PD-L1 Combined Positive Score of >=1, whereas none of the HR/MMR-intact cases met this threshold (p<0.00001). These results provide immunohistochemical evidence for intra-tumoral CD8+ T-cell enrichment and PD-L1 positivity in HR-d PDAC, suggesting that HR-d PDAC may be amenable to ICI treatment strategies.

8.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34644529

ABSTRACT

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Subject(s)
Pancreatic Neoplasms/pathology , Tumor Microenvironment , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation , Cell Proliferation , Epithelium/pathology , Extracellular Matrix/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Phenotype , Stromal Cells/pathology , Survival Analysis , Tumor Microenvironment/immunology
9.
Sci Rep ; 11(1): 10619, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34011980

ABSTRACT

Patient-derived xenograft (PDX) and their xenograft-derived organoid (XDO) models that recapitulate the genotypic and phenotypic landscape of patient cancers could help to advance research and lead to improved clinical management. PDX models were established from 276 pancreato-duodenal and biliary cancer resections. Initial, passage 0 (P0) engraftment rates were 59% (118/199) for pancreatic, 86% (25/29) for duodenal, and 35% (17/48) for biliary ductal tumors. Pancreatic ductal adenocarcinoma (PDAC), had a P0 engraftment rate of 62% (105/169). KRAS mutant and wild-type PDAC models were molecularly profiled, and XDO models were generated to perform initial drug response evaluations. Subsets of PDAC PDX models showed global copy number variants and gene expression profiles that were retained with serial passaging, and they showed a spectrum of somatic mutations represented in patient tumors. PDAC XDO models were established, with a success rate of 71% (10/14). Pathway activation of KRAS-MAPK in PDXs was independent of KRAS mutational status. Four wild-type KRAS models were characterized by one with EGFR (L747-P753 del), two with BRAF alterations (N486_P490del or V600E), and one with triple negative KRAS/EGFR/BRAF. Model OCIP256, characterized by BRAF (N486-P490 del), had activated phospho-ERK. A combination treatment of a pan-RAF inhibitor (LY3009120) and a MEK inhibitor (trametinib) effectively suppressed phospho-ERK and inhibited growth of OCIP256 XDO and PDX models. PDAC/duodenal adenocarcinoma have high success rates forming PDX/organoid and retaining their phenotypic and genotypic features. These models may be effective tools to evaluate novel drug combination therapies.


Subject(s)
Biliary Tract Neoplasms/pathology , Duodenal Neoplasms/pathology , Organoids/pathology , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biliary Tract Neoplasms/drug therapy , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Duodenal Neoplasms/drug therapy , Humans , Mice, Inbred NOD , Mice, SCID , Mutation/genetics , Organoids/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
10.
Gastroenterology ; 160(6): 2119-2132.e9, 2021 05.
Article in English | MEDLINE | ID: mdl-33524400

ABSTRACT

BACKGROUND AND AIMS: Homologous recombination deficiency (HRD) in pancreatic ductal adenocarcinoma (PDAC), remains poorly defined beyond germline (g) alterations in BRCA1, BRCA2, and PALB2. METHODS: We interrogated whole genome sequencing (WGS) data on 391 patients, including 49 carriers of pathogenic variants (PVs) in gBRCA and PALB2. HRD classifiers were applied to the dataset and included (1) the genomic instability score (GIS) used by Myriad's MyChoice HRD assay; (2) substitution base signature 3 (SBS3); (3) HRDetect; and (4) structural variant (SV) burden. Clinical outcomes and responses to chemotherapy were correlated with HRD status. RESULTS: Biallelic tumor inactivation of gBRCA or PALB2 was evident in 43 of 49 germline carriers identifying HRD-PDAC. HRDetect (score ≥0.7) predicted gBRCA1/PALB2 deficiency with highest sensitivity (98%) and specificity (100%). HRD genomic tumor classifiers suggested that 7% to 10% of PDACs that do not harbor gBRCA/PALB2 have features of HRD. Of the somatic HRDetecthi cases, 69% were attributed to alterations in BRCA1/2, PALB2, RAD51C/D, and XRCC2, and a tandem duplicator phenotype. TP53 loss was more common in BRCA1- compared with BRCA2-associated HRD-PDAC. HRD status was not prognostic in resected PDAC; however in advanced disease the GIS (P = .02), SBS3 (P = .03), and HRDetect score (P = .005) were predictive of platinum response and superior survival. PVs in gATM (n = 6) or gCHEK2 (n = 2) did not result in HRD-PDAC by any of the classifiers. In 4 patients, BRCA2 reversion mutations associated with platinum resistance. CONCLUSIONS: Germline and parallel somatic profiling of PDAC outperforms germline testing alone in identifying HRD-PDAC. An additional 7% to 10% of patients without gBRCA/PALB2 mutations may benefit from DNA damage response agents.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Genes, BRCA1 , Genes, BRCA2 , Pancreatic Neoplasms/genetics , Recombinational DNA Repair , Aged , Alleles , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/therapy , Cisplatin/administration & dosage , DNA-Binding Proteins/genetics , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Female , Fluorouracil/therapeutic use , Genomic Instability , Germ-Line Mutation , Homologous Recombination , Humans , Irinotecan/therapeutic use , Leucovorin/therapeutic use , Male , Middle Aged , Oxaliplatin/therapeutic use , Pancreatectomy , Pancreatic Neoplasms/therapy , Prognosis , Sensitivity and Specificity , Survival Rate , Tumor Suppressor Protein p53/genetics , Whole Genome Sequencing , Gemcitabine
11.
Clin Cancer Res ; 27(1): 246-254, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32958704

ABSTRACT

PURPOSE: With the rising incidence of early-onset pancreatic cancer (EOPC), molecular characteristics that distinguish early-onset pancreatic ductal adenocarcinoma (PDAC) tumors from those arising at a later age are not well understood. EXPERIMENTAL DESIGN: We performed bioinformatic analysis of genomic and transcriptomic data generated from 269 advanced (metastatic or locally advanced) and 277 resectable PDAC tumor samples. Patient samples were stratified into EOPC (age of onset ≤55 years; n = 117), intermediate (age of onset 55-70 years; n = 264), and average (age of onset ≥70 years; n = 165) groups. Frequency of somatic mutations affecting genes commonly implicated in PDAC, as well as gene expression patterns, were compared between EOPC and all other groups. RESULTS: EOPC tumors showed significantly lower frequency of somatic single-nucleotide variant (SNV)/insertions/deletions (indel) in CDKN2A (P = 0.0017), and were more likely to achieve biallelic mutation of CDKN2A through homozygous copy loss as opposed to heterozygous copy loss coupled with a loss-of-function SNV/indel mutation, the latter of which was more common for tumors with later ages of onset (P = 1.5e-4). Transcription factor forkhead box protein C2 (FOXC2) was significantly upregulated in EOPC tumors (P = 0.032). Genes significantly correlated with FOXC2 in PDAC samples were enriched for gene sets related to epithelial-to-mesenchymal transition (EMT) and included VIM (P = 1.8e-8), CDH11 (P = 6.5e-5), and CDH2 (P = 2.4e-2). CONCLUSIONS: Our comprehensive analysis of sequencing data generated from a large cohort of PDAC patient samples highlights a distinctive pattern of biallelic CDKN2A mutation in EOPC tumors. Increased expression of FOXC2 in EOPC, with the correlation between FOXC2 and EMT pathways, represents novel molecular characteristics of EOPC.See related commentary by Lou, p. 8.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Aged , Carcinoma, Pancreatic Ductal/genetics , Epithelial-Mesenchymal Transition , Genomics , Humans , Middle Aged , Pancreatic Neoplasms/genetics
12.
Gut ; 70(10): 1894-1903, 2021 10.
Article in English | MEDLINE | ID: mdl-32933947

ABSTRACT

OBJECTIVE: To describe the clinical, pathological and genomic characteristics of pancreatic cancer with DNA mismatch repair deficiency (MMRD) and proficiency (MMRP). DESIGN: We identified patients with MMRD and MMRP pancreatic cancer in a clinical cohort (N=1213, 519 with genetic testing, 53 with immunohistochemistry (IHC)) and a genomic cohort (N=288 with whole-genome sequencing (WGS)). RESULTS: 12 out of 1213 (1.0%) in the clinical cohort were MMRD by IHC or WGS. Of the 14 patients with Lynch syndrome, 3 (21.4%) had an MMRP pancreatic cancer by IHC, and 4 (28.6%) were excluded because tissue was unavailable for testing. MMRD cancers had longer overall survival after surgery (weighted HR after coarsened exact matching 0.11, 95% CI 0.02 to 0.78, p=0.001). One patient with an unresectable MMRD cancer has an ongoing partial response 3 years after starting treatment with PD-L1/CTLA-4 inhibition. This tumour showed none of the classical histopathological features of MMRD. 9 out of 288 (3.1%) tumours with WGS were MMRD. Despite markedly higher tumour mutational burden and neoantigen loads, MMRD cancers were significantly less likely to have mutations in usual pancreatic cancer driver genes like KRAS and SMAD4, but more likely to have mutations in genes that drive cancers with microsatellite instability like ACV2RA and JAK1. MMRD tumours were significantly more likely to have a basal-like transcriptional programme and elevated transcriptional markers of immunogenicity. CONCLUSIONS: MMRD pancreatic cancers have distinct clinical, pathological and genomic profiles. Patients with MMRD pancreatic cancer should be considered for basket trials targeting enhanced immunogenicity or the unique genomic drivers in these malignancies.


Subject(s)
Adenocarcinoma/genetics , DNA Repair-Deficiency Disorders/genetics , Pancreatic Neoplasms/genetics , Adenocarcinoma/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Repair-Deficiency Disorders/pathology , Female , Genetic Testing , Genomics , Humans , Male , Microsatellite Instability , Mutation , Ontario , Pancreatic Neoplasms/pathology , Retrospective Studies , Whole Genome Sequencing
13.
Clin Cancer Res ; 27(1): 150-157, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33051307

ABSTRACT

PURPOSE: RNA-sequencing-based subtyping of pancreatic ductal adenocarcinoma (PDAC) has been reported by multiple research groups, each using different methodologies and patient cohorts. "Classical" and "basal-like" PDAC subtypes are associated with survival differences, with basal-like tumors associated with worse prognosis. We amalgamated various PDAC subtyping tools to evaluate the potential of such tools to be reliable in clinical practice. EXPERIMENTAL DESIGN: Sequencing data for 574 PDAC tumors was obtained from prospective trials and retrospective public databases. Six published PDAC subtyping strategies (Moffitt regression tools, clustering-based Moffitt, Collisson, Bailey, and Karasinska subtypes) were used on each sample, and results were tested for subtype call consistency and association with survival. RESULTS: Basal-like and classical subtype calls were concordant in 88% of patient samples, and survival outcomes were significantly different (P < 0.05) between prognostic subtypes. Twelve percent of tumors had subtype-discordant calls across the different methods, showing intermediate survival in univariate and multivariate survival analyses. Transcriptional profiles compatible with that of a hybrid subtype signature were observed for subtype-discordant tumors, in which classical and basal-like genes were concomitantly expressed. Subtype-discordant tumors showed intermediate molecular characteristics, including subtyping gene expression (P < 0.0001) and mutant KRAS allelic imbalance (P < 0.001). CONCLUSIONS: Nearly 1 in 6 patients with PDAC have tumors that fail to reliably fall into the classical or basal-like PDAC subtype categories, based on two regression tools aimed toward clinical practice. Rather, these patient tumors show intermediate prognostic and molecular traits. We propose close consideration of the non-binary nature of PDAC subtypes for future incorporation of subtyping into clinical practice.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation, Neoplastic , Humans , Pancreas/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Prospective Studies , RNA-Seq , Retrospective Studies , Survival Analysis
14.
Clin Cancer Res ; 26(20): 5462-5476, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32816949

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) arising in patients with a germline BRCA1 or BRCA2 (gBRCA) mutation may be sensitive to platinum and PARP inhibitors (PARPi). However, treatment stratification based on gBRCA mutational status alone is associated with heterogeneous responses. EXPERIMENTAL DESIGN: We performed a seven-arm preclinical trial consisting of 471 mice, representing 12 unique PDAC patient-derived xenografts, of which nine were gBRCA mutated. From 179 patients whose PDAC was whole-genome and transcriptome sequenced, we identified 21 cases with homologous recombination deficiency (HRD), and investigated prognostic biomarkers. RESULTS: We found that biallelic inactivation of BRCA1/BRCA2 is associated with genomic hallmarks of HRD and required for cisplatin and talazoparib (PARPi) sensitivity. However, HRD genomic hallmarks persisted in xenografts despite the emergence of therapy resistance, indicating the presence of a genomic scar. We identified tumor polyploidy and a low Ki67 index as predictors of poor cisplatin and talazoparib response. In patients with HRD PDAC, tumor polyploidy and a basal-like transcriptomic subtype were independent predictors of shorter survival. To facilitate clinical assignment of transcriptomic subtype, we developed a novel pragmatic two-marker assay (GATA6:KRT17). CONCLUSIONS: In summary, we propose a predictive and prognostic model of gBRCA-mutated PDAC on the basis of HRD genomic hallmarks, Ki67 index, tumor ploidy, and transcriptomic subtype.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Homologous Recombination/drug effects , Pancreatic Neoplasms/drug therapy , Animals , Biomarkers, Tumor/genetics , Cisplatin/administration & dosage , Cisplatin/adverse effects , Disease Models, Animal , Female , Heterografts , Humans , Male , Mice , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phthalazines/administration & dosage , Phthalazines/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage
15.
Mol Cancer Ther ; 19(9): 1889-1897, 2020 09.
Article in English | MEDLINE | ID: mdl-32518206

ABSTRACT

Next-generation sequencing of solid tumors has revealed variable signatures of immunogenicity across tumors, but underlying molecular characteristics driving such variation are not fully understood. Although expression of endogenous retrovirus (ERV)-containing transcripts can provide a source of tumor-specific neoantigen in some cancer models, associations between ERV levels and immunogenicity across different types of metastatic cancer are not well established. We performed bioinformatics analysis of genomic, transcriptomic, and clinical data across an integrated cohort of 199 patients with metastatic breast, colorectal, and pancreatic ductal adenocarcinoma tumors. Within each cancer type, we identified a subgroup of viral mimicry tumors in which increased ERV levels were coupled with transcriptional signatures of autonomous antiviral response and immunogenicity. In addition, viral mimicry colorectal and pancreatic tumors showed increased expression of DNA demethylation gene TET2 Taken together, these data demonstrate the existence of an ERV-associated viral mimicry phenotype across three distinct metastatic cancer types, while indicating links between ERV abundance, epigenetic dysregulation, and immunogenicity.


Subject(s)
Computational Biology/methods , DNA-Binding Proteins/genetics , Endogenous Retroviruses/genetics , Neoplasm Metastasis/genetics , Proto-Oncogene Proteins/genetics , Cell Line, Tumor , Dioxygenases , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomics , High-Throughput Nucleotide Sequencing , Humans , Neoplasm Metastasis/immunology , RNA, Viral/genetics , Sequence Analysis, RNA , Survival Analysis , Up-Regulation
16.
Clin Cancer Res ; 26(18): 4901-4910, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32156747

ABSTRACT

PURPOSE: To determine the impact of basal-like and classical subtypes in advanced pancreatic ductal adenocarcinoma (PDAC) and to explore GATA6 expression as a surrogate biomarker. EXPERIMENTAL DESIGN: Within the COMPASS trial, patients proceeding to chemotherapy for advanced PDAC undergo tumor biopsy for RNA-sequencing (RNA-seq). Overall response rate (ORR) and overall survival (OS) were stratified by subtypes and according to chemotherapy received. Correlation of GATA6 with the subtypes using gene expression profiling, in situ hybridization (ISH) was explored. RESULTS: Between December 2015 and May 2019, 195 patients (95%) had enough tissue for RNA-seq; 39 (20%) were classified as basal-like and 156 (80%) as classical. RECIST response data were available for 157 patients; 29 basal-like and 128 classical where the ORR was 10% versus 33%, respectively (P = 0.02). In patients with basal-like tumors treated with modified FOLFIRINOX (n = 22), the progression rate was 60% compared with 15% in classical PDAC (P = 0.0002). Median OS in the intention-to-treat population (n = 195) was 9.3 months for classical versus 5.9 months for basal-like PDAC (HR, 0.47; 95% confidence interval, 0.32-0.69; P = 0.0001). GATA6 expression by RNA-seq highly correlated with the classifier (P < 0.001) and ISH predicted the subtypes with sensitivity of 89% and specificity of 83%. In a multivariate analysis, GATA6 expression was prognostic (P = 0.02). In exploratory analyses, basal-like tumors, could be identified by keratin 5, were more hypoxic and enriched for a T-cell-inflamed gene expression signature. CONCLUSIONS: The basal-like subtype is chemoresistant and can be distinguished from classical PDAC by GATA6 expression.See related commentary by Collisson, p. 4715.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Drug Resistance, Neoplasm/genetics , GATA6 Transcription Factor/genetics , Pancreatic Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , GATA6 Transcription Factor/analysis , Gene Expression Regulation, Neoplastic , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Leucovorin/pharmacology , Leucovorin/therapeutic use , Male , Middle Aged , Multicenter Studies as Topic , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , Prospective Studies , RNA-Seq , Response Evaluation Criteria in Solid Tumors
18.
Clin Cancer Res ; 26(8): 1997-2010, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31964786

ABSTRACT

PURPOSE: The molecular drivers of antitumor immunity in pancreatic ductal adenocarcinoma (PDAC) are poorly understood, posing a major obstacle for the identification of patients potentially amenable for immune-checkpoint blockade or other novel strategies. Here, we explore the association of chemokine expression with effector T-cell infiltration in PDAC. EXPERIMENTAL DESIGN: Discovery cohorts comprised 113 primary resected PDAC and 107 PDAC liver metastases. Validation cohorts comprised 182 PDAC from The Cancer Genome Atlas and 92 PDACs from the Australian International Cancer Genome Consortium. We explored associations between immune cell counts by immunohistochemistry, chemokine expression, and transcriptional hallmarks of antitumor immunity by RNA sequencing (RNA-seq), and mutational burden by whole-genome sequencing. RESULTS: Among all known human chemokines, a coregulated set of four (CCL4, CCL5, CXCL9, and CXCL10) was strongly associated with CD8+ T-cell infiltration (P < 0.001). Expression of this "4-chemokine signature" positively correlated with transcriptional metrics of T-cell activation (ZAP70, ITK, and IL2RB), cytolytic activity (GZMA and PRF1), and immunosuppression (PDL1, PD1, CTLA4, TIM3, TIGIT, LAG3, FASLG, and IDO1). Furthermore, the 4-chemokine signature marked tumors with increased T-cell activation scores (MHC I presentation, T-cell/APC costimulation) and elevated expression of innate immune sensing pathways involved in T-cell priming (STING and NLRP3 inflammasome pathways, BATF3-driven dendritic cells). Importantly, expression of this 4-chemokine signature was consistently indicative of a T-cell-inflamed phenotype across primary PDAC and PDAC liver metastases. CONCLUSIONS: A conserved 4-chemokine signature marks resectable and metastatic PDAC tumors with an active antitumor phenotype. This could have implications for the appropriate selection of PDAC patients in immunotherapy trials.


Subject(s)
Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/immunology , Chemokine CCL4/genetics , Chemokine CCL5/genetics , Chemokine CXCL10/genetics , Chemokine CXCL9/genetics , Liver Neoplasms/secondary , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/immunology , Chemokine CCL4/immunology , Chemokine CCL5/immunology , Chemokine CXCL10/immunology , Chemokine CXCL9/immunology , Cohort Studies , Computational Biology/methods , Databases, Genetic/statistics & numerical data , Humans , Immune Checkpoint Proteins/genetics , Immunotherapy/methods , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , RNA-Seq/methods
19.
Nat Genet ; 52(2): 231-240, 2020 02.
Article in English | MEDLINE | ID: mdl-31932696

ABSTRACT

Pancreatic adenocarcinoma presents as a spectrum of a highly aggressive disease in patients. The basis of this disease heterogeneity has proved difficult to resolve due to poor tumor cellularity and extensive genomic instability. To address this, a dataset of whole genomes and transcriptomes was generated from purified epithelium of primary and metastatic tumors. Transcriptome analysis demonstrated that molecular subtypes are a product of a gene expression continuum driven by a mixture of intratumoral subpopulations, which was confirmed by single-cell analysis. Integrated whole-genome analysis uncovered that molecular subtypes are linked to specific copy number aberrations in genes such as mutant KRAS and GATA6. By mapping tumor genetic histories, tetraploidization emerged as a key mutational process behind these events. Taken together, these data support the premise that the constellation of genomic aberrations in the tumor gives rise to the molecular subtype, and that disease heterogeneity is due to ongoing genomic instability during progression.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/mortality , Cohort Studies , Female , GATA6 Transcription Factor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomic Instability , Humans , Male , Middle Aged , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/mortality , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Smad4 Protein/genetics
20.
Clin Cancer Res ; 26(1): 135-146, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31481506

ABSTRACT

PURPOSE: Identification of clinically actionable molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) is key to improving patient outcome. Intertumoral metabolic heterogeneity contributes to cancer survival and the balance between distinct metabolic pathways may influence PDAC outcome. We hypothesized that PDAC can be stratified into prognostic metabolic subgroups based on alterations in the expression of genes involved in glycolysis and cholesterol synthesis. EXPERIMENTAL DESIGN: We performed bioinformatics analysis of genomic, transcriptomic, and clinical data in an integrated cohort of 325 resectable and nonresectable PDAC. The resectable datasets included retrospective The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) cohorts. The nonresectable PDAC cohort studies included prospective COMPASS, PanGen, and BC Cancer Personalized OncoGenomics program (POG). RESULTS: On the basis of the median normalized expression of glycolytic and cholesterogenic genes, four subgroups were identified: quiescent, glycolytic, cholesterogenic, and mixed. Glycolytic tumors were associated with the shortest median survival in resectable (log-rank test P = 0.018) and metastatic settings (log-rank test P = 0.027). Patients with cholesterogenic tumors had the longest median survival. KRAS and MYC-amplified tumors had higher expression of glycolytic genes than tumors with normal or lost copies of the oncogenes (Wilcoxon rank sum test P = 0.015). Glycolytic tumors had the lowest expression of mitochondrial pyruvate carriers MPC1 and MPC2. Glycolytic and cholesterogenic gene expression correlated with the expression of prognostic PDAC subtype classifier genes. CONCLUSIONS: Metabolic classification specific to glycolytic and cholesterogenic pathways provides novel biological insight into previously established PDAC subtypes and may help develop personalized therapies targeting unique tumor metabolic profiles.See related commentary by Mehla and Singh, p. 6.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Cholesterol , Glycolysis , Humans , Prospective Studies , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...