Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Avian Pathol ; 41(2): 177-93, 2012.
Article in English | MEDLINE | ID: mdl-22515536

ABSTRACT

Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated "wet" M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and "wet" M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.


Subject(s)
Chickens , Ducks , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Phylogeny , Poultry Diseases/epidemiology , Poultry Diseases/virology , Animals , Base Sequence , Bayes Theorem , Cluster Analysis , Feathers/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/diagnosis , Molecular Sequence Data , Neuraminidase/genetics , Poultry Diseases/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Vietnam/epidemiology
2.
Influenza Other Respir Viruses ; 4(5): 277-93, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20716157

ABSTRACT

BACKGROUND: There is a requirement to detect and differentiate pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by real time reverse transcription (RRT) PCR methods. OBJECTIVES: First, modify an existing matrix (M) gene RRT PCR for sensitive generic detection of H1N1v and other European SIVs. Second, design an H1 RRT PCR to specifically detect H1N1v infections. METHODS: RRT PCR assays were used to test laboratory isolates of SIV (n = 51; 37 European and 14 North American), H1N1v (n = 5) and avian influenza virus (AIV; n = 43). Diagnostic sensitivity and specificity were calculated for swabs (n = 133) and tissues (n = 116) collected from field cases and pigs infected experimentally with SIVs and H1N1v. RESULTS: The "perfect match" M gene RRT PCR was the most sensitive variant of this test for detection of established European SIVs and H1N1v. H1 RRT PCR specifically detected H1N1v but not European SIVs. Validation with clinical specimens included comparison with virus isolation (VI) as a "gold standard", while field infection with H1N1v in swine was independently confirmed by sequencing H1N1v amplified by conventional RT PCR. "Perfect match" M gene RRT PCR had 100% sensitivity and 95.2% specificity for swabs, 93.6% and 98.6% for tissues. H1 RRT PCR demonstrated sensitivity and specificity of 100% and 99.1%, respectively, for the swabs, and 100% and 100% for the tissues. CONCLUSIONS: Two RRT PCRs for the purposes of (i) generic detection of SIV and H1N1v infection in European pigs, and for (ii) specific detection of H1N1v (pandemic influenza) infection were validated.


Subject(s)
Influenza A virus/genetics , Influenza A virus/isolation & purification , Orthomyxoviridae Infections/veterinary , Reverse Transcriptase Polymerase Chain Reaction/methods , Swine Diseases/diagnosis , Swine Diseases/virology , Virology/methods , Animals , Orthomyxoviridae Infections/diagnosis , Sensitivity and Specificity , Swine , Viral Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...