Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2797: 145-157, 2024.
Article in English | MEDLINE | ID: mdl-38570458

ABSTRACT

MALDI-TOF mass spectrometry enables high-throughput screening of covalent fragment libraries and SAR compound progressions of selective KRAS G12C inhibitors. Using the MALDI-TOF platform instead of the more traditional ESI-MS TOF/orbitrap instrumentation can radically shorten sample acquisition time, allowing up to 384 samples to be screened in 30 min. The typical throughput for a covalent library screen is 1152 samples per 8 h, including processing, calculation, and reporting steps. The throughput can be doubled without any significant assay modification.


Subject(s)
High-Throughput Screening Assays , Proto-Oncogene Proteins p21(ras) , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Proto-Oncogene Proteins p21(ras)/genetics , High-Throughput Screening Assays/methods , Mutation
2.
medRxiv ; 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37904956

ABSTRACT

Due to a combination of asymptomatic or undiagnosed infections, the proportion of the United States population infected with SARS-CoV-2 was unclear from the beginning of the pandemic. We previously established a platform to screen for SARS-CoV-2 positivity across a representative proportion of the US population, from which we reported that almost 17 million Americans were estimated to have had undocumented infections in the Spring of 2020. Since then, vaccine rollout and prevalence of different SARS-CoV-2 variants have further altered seropositivity trends within the United States population. To explore the longitudinal impacts of the pandemic and vaccine responses on seropositivity, we re-enrolled participants from our baseline study in a 6- and 12- month follow-up study to develop a longitudinal antibody profile capable of representing seropositivity within the United States during a critical period just prior to and during the initiation of vaccine rollout. Initial measurements showed that, since July 2020, seropositivity elevated within this population from 4.8% at baseline to 36.2% and 89.3% at 6 and 12 months, respectively. We also evaluated nucleocapsid seropositivity and compared to spike seropositivity to identify trends in infection versus vaccination relative to baseline. These data serve as a window into a critical timeframe within the COVID-19 pandemic response and serve as a resource that could be used in subsequent respiratory illness outbreaks.

3.
Sci Transl Med ; 13(601)2021 07 07.
Article in English | MEDLINE | ID: mdl-34158410

ABSTRACT

Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates in the United States and elsewhere. To address this, we analyzed seropositivity in 9089 adults in the United States who had not been diagnosed previously with COVID-19. Individuals with characteristics that reflected the U.S. population (n = 27,716) were selected by quota sampling from 462,949 volunteers. Enrolled participants (n = 11,382) provided medical, geographic, demographic, and socioeconomic information and dried blood samples. Survey questions coincident with the Behavioral Risk Factor Surveillance System survey, a large probability-based national survey, were used to adjust for selection bias. Most blood samples (88.7%) were collected between 10 May and 31 July 2020 and were processed using ELISA to measure seropositivity (IgG and IgM antibodies against SARS-CoV-2 spike protein and the spike protein receptor binding domain). The overall weighted undiagnosed seropositivity estimate was 4.6% (95% CI, 2.6 to 6.5%), with race, age, sex, ethnicity, and urban/rural subgroup estimates ranging from 1.1% to 14.2%. The highest seropositivity estimates were in African American participants; younger, female, and Hispanic participants; and residents of urban centers. These data indicate that there were 4.8 undiagnosed SARS-CoV-2 infections for every diagnosed case of COVID-19, and an estimated 16.8 million infections were undiagnosed by mid-July 2020 in the United States.


Subject(s)
COVID-19 , Pandemics , Adult , Antibodies, Viral , Female , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , United States/epidemiology
4.
J Clin Immunol ; 41(5): 906-913, 2021 07.
Article in English | MEDLINE | ID: mdl-33725211

ABSTRACT

In order to properly understand the spread of SARS-CoV-2 infection and development of humoral immunity, researchers have evaluated the presence of serum antibodies of people worldwide experiencing the pandemic. These studies rely on the use of recombinant proteins from the viral genome in order to identify serum antibodies that recognize SARS-CoV-2 epitopes. Here, we discuss the cross-reactivity potential of SARS-CoV-2 antibodies with the full spike proteins of four other betacoronaviruses that cause disease in humans, MERS-CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1. Using enzyme-linked immunosorbent assays (ELISAs), we detected the potential cross-reactivity of antibodies against SARS-CoV-2 towards the four other coronaviruses, with the strongest cross-recognition between SARS-CoV-2 and SARS /MERS-CoV antibodies, as expected based on sequence homology of their respective spike proteins. Further analysis of cross-reactivity could provide informative data that could lead to intelligently designed pan-coronavirus therapeutics or vaccines.


Subject(s)
Betacoronavirus/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Viral/blood , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Humans , Middle Aged , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/immunology , Young Adult
5.
medRxiv ; 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33532807

ABSTRACT

Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population (n = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling from 241,424 volunteers (ClinicalTrials.gov NCT04334954). Enrolled participants provided medical, geographic, demographic, and socioeconomic information and 9,028 blood samples. The majority (88.7%) of samples were collected between May 10th and July 31st, 2020. Samples were analyzed via ELISA for anti-Spike and anti-RBD antibodies. Estimation of seroprevalence was performed by using a weighted analysis to reflect the US population. We detected an undiagnosed seropositivity rate of 4.6% (95% CI: 2.6 - 6.5%). There was distinct regional variability, with heightened seropositivity in locations of early outbreaks. Subgroup analysis demonstrated that the highest estimated undiagnosed seropositivity within groups was detected in younger participants (ages 18-45, 5.9%), females (5.5%), Black/African American (14.2%), Hispanic (6.1%), and Urban residents (5.3%), and lower undiagnosed seropositivity in those with chronic diseases. During the first wave of infection over the spring/summer of 2020 an estimate of 4.6% of adults had a prior undiagnosed SARS-CoV-2 infection. These data indicate that there were 4.8 (95% CI: 2.8-6.8) undiagnosed cases for every diagnosed case of COVID-19 during this same time period in the United States, and an estimated 16.8 million undiagnosed cases by mid-July 2020.

6.
Nat Commun ; 12(1): 1176, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608534

ABSTRACT

The first step of RAF activation involves binding to active RAS, resulting in the recruitment of RAF to the plasma membrane. To understand the molecular details of RAS-RAF interaction, we present crystal structures of wild-type and oncogenic mutants of KRAS complexed with the RAS-binding domain (RBD) and the membrane-interacting cysteine-rich domain (CRD) from the N-terminal regulatory region of RAF1. Our structures reveal that RBD and CRD interact with each other to form one structural entity in which both RBD and CRD interact extensively with KRAS. Mutations at the KRAS-CRD interface result in a significant reduction in RAF1 activation despite only a modest decrease in binding affinity. Combining our structures and published data, we provide a model of RAS-RAF complexation at the membrane, and molecular insights into RAS-RAF interaction during the process of RAS-mediated RAF activation.


Subject(s)
Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/chemistry , ras Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Cysteine/metabolism , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains/genetics , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins p21(ras)/genetics
7.
Nat Commun ; 12(1): 113, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397956

ABSTRACT

The extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is key to avoiding medically costly diagnostic errors, as well as to assuring properly informed public health decisions. Here, we present an optimized ELISA-based serology protocol, from antigen production to data analyses, that helps define thresholds for IgG and IgM seropositivity with high specificities. Validation of this protocol is performed using traditionally collected serum as well as dried blood on mail-in blood sampling kits. Archival (pre-2019) samples are used as negative controls, and convalescent, PCR-diagnosed COVID-19 patient samples serve as positive controls. Using this protocol, minimal cross-reactivity is observed for the spike proteins of MERS, SARS1, OC43 and HKU1 viruses, and no cross reactivity is observed with anti-influenza A H1N1 HAI. Our protocol may thus help provide standardized, population-based data on the extent of SARS-CoV-2 seropositivity, immunity and infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Reference Standards , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
8.
Protein Expr Purif ; 179: 105802, 2021 03.
Article in English | MEDLINE | ID: mdl-33248226

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes. Through this investigation, we developed a simplified and robust purification strategy that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA. These improved reagents and processes produce high-quality proteins which are functional in serology assays and can be used to investigate seropositivity to SARS-CoV-2 infection.


Subject(s)
COVID-19/blood , Protein Domains/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/isolation & purification , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Humans , Protein Binding/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics
9.
bioRxiv ; 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33236017

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a commonly used antigen for serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Different versions of the RBD protein have been developed and utilized in assays, with higher sensitivity attributed to particular forms of the protein. To improve the yield of these high-sensitivity forms of RBD and support the increased demand for this antigen in serology assays, we investigated several protein expression variables including DNA elements such as promoters and signal peptides, cell culture expression parameters, and purification processes. Through this investigation, we developed a simplified and robust purification strategy that consistently resulted in high levels of the high-sensitivity form of RBD and demonstrated that a carboxyterminal tag is responsible for the increased sensitivity in the ELISA. These improved reagents and processes produce high-quality proteins which are functional in serology assays and can be used to investigate seropositivity to SARS-CoV-2 infection. Highlights: Improved yields of SARS-CoV-2 spike RBD through modification of DNA constructs and purification parametersTwo versions of RBD show different sensitivity in serology assaysYields of greater than 50 mg/l obtained under optimal conditionsMagnetic bead purification technology improves throughput of protein production.

10.
bioRxiv ; 2020 May 28.
Article in English | MEDLINE | ID: mdl-32511418

ABSTRACT

The SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation. Through this investigation, we developed a simplified and robust purification strategy that consistently yields 5 mg of protein per liter of expression culture for two commonly used forms of the SARS-CoV-2 spike protein. We show that these proteins form well-behaved stable trimers and are consistently functional in serology assays across multiple protein production lots.

11.
medRxiv ; 2020 May 25.
Article in English | MEDLINE | ID: mdl-32511472

ABSTRACT

The extent of SARS-CoV-2 infection throughout the United States population is currently unknown. High quality serology is a key tool to understanding the spread of infection, immunity against the virus, and correlates of protection. Limited validation and testing of serology assays used for serosurveys can lead to unreliable or misleading data, and clinical testing using such unvalidated assays can lead to medically costly diagnostic errors and improperly informed public health decisions. Estimating prevalence and clinical decision making is highly dependent on specificity. Here, we present an optimized ELISA-based serology protocol from antigen production to data analysis. This protocol defines thresholds for IgG and IgM for determination of seropositivity with estimated specificity well above 99%. Validation was performed using both traditionally collected serum and dried blood on mail-in blood sampling kits, using archival (pre-2019) negative controls and known PCR-diagnosed positive patient controls. Minimal cross-reactivity was observed for the spike proteins of MERS, SARS1, OC43 and HKU1 viruses and no cross reactivity was observed with anti-influenza A H1N1 HAI titer during validation. This strategy is highly specific and is designed to provide good estimates of seroprevalence of SARS-CoV-2 seropositivity in a population, providing specific and reliable data from serosurveys and clinical testing which can be used to better evaluate and understand SARS-CoV-2 immunity and correlates of protection.

12.
Protein Expr Purif ; 174: 105686, 2020 10.
Article in English | MEDLINE | ID: mdl-32504802

ABSTRACT

The SARS-CoV-2 spike trimer is the primary antigen for several serology assays critical to determining the extent of SARS-CoV-2 exposure in the population. Until stable cell lines are developed to increase the titer of this secreted protein in mammalian cell culture, the low yield of spike protein produced from transient transfection of HEK293 cells will be a limiting factor for these assays. To improve the yield of spike protein and support the high demand for antigens in serology assays, we investigated several recombinant protein expression variables by altering the incubation temperature, harvest time, chromatography strategy, and final protein manipulation. Through this investigation, we developed a simplified and robust purification strategy that consistently yields 5 mg of protein per liter of expression culture for two commonly used forms of the SARS-CoV-2 spike protein. We show that these proteins form well-behaved stable trimers and are consistently functional in serology assays across multiple protein production lots.


Subject(s)
Betacoronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Gene Expression , HEK293 Cells , Humans , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Transfection
13.
medRxiv ; 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596697

ABSTRACT

In order to properly understand the spread of SARS-CoV-2 infection and development of humoral immunity, researchers have evaluated the presence of serum antibodies of people worldwide experiencing the pandemic. These studies rely on the use of recombinant proteins from the viral genome in order to identify serum antibodies that recognize SARS-CoV-2 epitopes. Here, we discuss the cross-reactivity potential of SARS-CoV-2 antibodies with the full spike proteins of four other Betacoronaviruses that cause disease in humans, MERS-CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1. Using enzyme-linked immunosorbent assays (ELISAs), we detected the potential cross-reactivity of antibodies against SARS-CoV-2 towards the four other coronaviruses, with the strongest cross-recognition between SARS-CoV-2 and SARS /MERS-CoV antibodies, as expected based on sequence homology of their respective spike proteins. Further analysis of cross-reactivity could provide informative data that could lead to intelligently designed pan-coronavirus therapeutics or vaccines.

14.
Biophys J ; 114(1): 137-145, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29320680

ABSTRACT

Ras is a membrane-anchored signaling protein that serves as a hub for many signaling pathways and also plays a prominent role in cancer. The intrinsic behavior of Ras on the membrane has captivated the biophysics community in recent years, especially the possibility that it may form dimers. In this article, we describe results from a comprehensive series of experiments using fluorescence correlation spectroscopy and single-molecule tracking to probe the possible dimerization of natively expressed and fully processed K-Ras4B in supported lipid bilayer membranes. Key to these studies is the fact that K-Ras4B has its native membrane anchor, including both the farnesylation and methylation of the terminal cysteine, enabling detailed exploration of possible effects of cholesterol and lipid composition on K-Ras4B membrane organization. The results from all conditions studied indicate that full-length K-Ras4B lacks intrinsic dimerization capability. This suggests that any lateral organization of Ras in living cell membranes likely stems from interactions with other factors.


Subject(s)
Cell Membrane/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Humans , Protein Multimerization , Protein Structure, Quaternary , Surface Properties
15.
Methods Mol Biol ; 1586: 65-82, 2017.
Article in English | MEDLINE | ID: mdl-28470599

ABSTRACT

The major goal of any protein expression experiment is to combine the maximum production per cell of soluble protein with the highest possible cell density to most efficiently obtain high yields of protein. A large number of parameters can be optimized in these experiments, but one of the most interesting parameters that have a strong effect on both per cell productivity and cell density is the cellular growth media coupled to the expression induction process. Using specialized media and testing multiple induction conditions, it is possible to significantly enhance the production of heterologous proteins from E. coli.


Subject(s)
Cell Culture Techniques/methods , Cloning, Molecular/methods , Culture Media/metabolism , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Animals , Escherichia coli/cytology , Escherichia coli/genetics , Gene Expression , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Solubility
16.
FEMS Yeast Res ; 11(2): 168-78, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21166768

ABSTRACT

Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain.


Subject(s)
Aspartic Acid Proteases/deficiency , Gene Expression , Kluyveromyces/enzymology , Kluyveromyces/metabolism , Recombinant Proteins/metabolism , Arecaceae/enzymology , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungal Proteins/genetics , Gene Deletion , Kluyveromyces/genetics , Luciferases/metabolism , Molecular Sequence Data , Mutagenesis , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...