Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 38(6): 2079-92, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20198510

ABSTRACT

Electrical potentials in mechanically loaded bone have been implicated as signals in the bone remodeling cycle. Recently, interest has grown in exploiting this phenomenon to develop electrically active ceramics for implantation in hard tissue which may induce improved biological responses. Both polarized hydroxyapatite (HA), whose surface charge is not dependent on loading, and piezoelectric ceramics, which produce electrical potentials under stress, have been studied in order to determine the possible benefits of using electrically active bioceramics as implant materials. The polarization of HA has a positive influence on interfacial responses to the ceramic. In vivo studies of polarized HA have shown polarized samples to induce improvements in bone ingrowth. The majority of piezoelectric ceramics proposed for implant use contain barium titanate (BaTiO(3)). In vivo and in vitro investigations have indicated that such ceramics are biocompatible and, under appropriate mechanical loading, induce improved bone formation around implants. The mechanism by which electrical activity influences biological responses is yet to be clearly defined, but is likely to result from preferential adsorption of proteins and ions onto the polarized surface. Further investigation is warranted into the use of electrically active ceramics as the indications are that they have benefits over existing implant materials.


Subject(s)
Bone Substitutes/chemistry , Bone Substitutes/radiation effects , Ceramics/chemistry , Ceramics/radiation effects , Electromagnetic Fields , Radiation Dosage , Surface Properties/radiation effects
2.
Acta Biomater ; 5(2): 743-54, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18829403

ABSTRACT

This paper studies the AC conductivity and permittivity of hydroxyapatite (HA)-based ceramics from 0.1 Hz-1 MHz at temperatures from room temperature to 1000 degrees C. HA-based ceramics were prepared either as dense ceramics or in porous form with interconnected porosity and were sintered in either air or water vapour. Samples were thermally cycled to examine the influence of water desorption on AC conductivity and permittivity. Surface-bound water was thought to contribute to conductivity for both dense and porous materials at temperatures below 200 degrees C. At temperatures below 700 degrees C the permittivity and AC conductivity of HA was also influenced by the degree of dehydration and thermal history. At higher temperatures (700-1000 degrees C), bulk ionic conduction was dominant and activation energies were of the order of approximately 2 eV, indicating that hydroxyl ions are responsible for conductivity.


Subject(s)
Ceramics , Durapatite/chemistry , Electric Conductivity , Biocompatible Materials , Hot Temperature , Microscopy, Electron, Scanning , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...