Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Mol Neurosci ; 16: 1127163, 2023.
Article in English | MEDLINE | ID: mdl-37324585

ABSTRACT

Background: Dementia is one of the most common diseases in elderly people and hundreds of thousand new cases per year of Alzheimer's disease (AD) are estimated. While the recent decade has seen significant advances in the development of novel biomarkers to identify dementias at their early stage, a great effort has been recently made to identify biomarkers able to improve differential diagnosis. However, only few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been described so far. Methods: We searched for miRNAs regulating MAPT translation. We employed a capture technology able to find the miRNAs directly bound to the MAPT transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls (HCs) (n = 42) by using qRT-PCR. Results: Firstly, we found all miRNAs that interact with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau levels increasing or reducing miRNA levels by using cell transfections with plasmids expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex. Respect to HC, the only difference is showed in men with AD who have reduced levels of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients with FTD maintain this trend in both genders. Conclusions: Our results seem to identify miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC, while miR-320b to discriminate FTD from HC, particularly in males. Combining three miRNAs improves the accuracy only in females, particularly for differential diagnosis (FTD vs. AD) and to distinguish FTD from HC.

2.
Biol Open ; 11(10)2022 10 15.
Article in English | MEDLINE | ID: mdl-36239357

ABSTRACT

Since the formalization of the Central Dogma of molecular biology, the relevance of RNA in modulating the flow of information from DNA to proteins has been clear. More recently, the discovery of a vast set of non-coding transcripts involved in crucial aspects of cellular biology has renewed the enthusiasm of the RNA community. Moreover, the remarkable impact of RNA therapies in facing the COVID19 pandemics has bolstered interest in the translational opportunities provided by this incredible molecule. For all these reasons, the Italian Society of Biophysics and Molecular Biology (SIBBM) decided to dedicate its 17th yearly meeting, held in June 2022 in Rome, to the many fascinating aspects of RNA biology. More than thirty national and international speakers covered the properties, modes of action and applications of RNA, from its role in the control of development and cell differentiation to its involvement in disease. Here, we summarize the scientific content of the conference, highlighting the take-home message of each presentation, and we stress the directions the community is currently exploring to push forward our comprehension of the RNA World 3.0.


Subject(s)
COVID-19 , RNA , Biophysics , Biotechnology , Humans , Molecular Biology , RNA/genetics
3.
Methods Mol Biol ; 2404: 207-218, 2022.
Article in English | MEDLINE | ID: mdl-34694611

ABSTRACT

microRNA capture affinity technology (miR-CATCH) uses affinity capture biotinylated antisense oligonucleotides to co-purify a target transcript together with all its endogenously bound miRNAs. The miR-CATCH assay is performed to investigate miRNAs bound to a specific mRNA. This method allows to have a total vision of miRNAs bound not only to the 3'UTR but also to the 5'UTR and Coding Region of target messenger RNAs (mRNAs).


Subject(s)
MicroRNAs/genetics , 3' Untranslated Regions , Oligonucleotides, Antisense/genetics , RNA, Messenger , Technology
4.
Nucleic Acid Ther ; 31(3): 183-184, 2021 06.
Article in English | MEDLINE | ID: mdl-34097476

ABSTRACT

The number of novel potential RNA-based antisense therapeutics is rapidly increasing. However, efficient delivery to target tissues is still the main factor that limits their translation into the clinic. Although many groups in academia and industry are working toward the development of methods to improve antisense delivery to overcome this limitation, there are very few coordinated efforts to learn from the experience of other investigators by sharing "negative" results. In the field of nucleic acid therapeutics, or any other type of therapeutics, the ultimate aim of most research projects is to develop novel or improved therapeutic strategies. It seems only logical that experiments are thought to yield a "negative result" if there is an absence of an improvement in some parameter related to potential therapeutic efficacy. These data often do not get published in scientific journals or presented at scientific meetings. However, positive and negative results obtained from scientifically sound experiments are equally valuable in facilitating progress in the field. They avoid unnecessary duplication of experiments and allow researchers to take approaches that did not yield the predicted result into account when designing new experiments.


Subject(s)
Nucleic Acids , RNA, Antisense , Negative Results , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , RNA, Antisense/genetics
5.
Nature ; 594(7861): 117-123, 2021 06.
Article in English | MEDLINE | ID: mdl-34012113

ABSTRACT

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Subject(s)
Protein Biosynthesis/genetics , Proteostasis/genetics , RNA, Antisense/genetics , Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Aged , Animals , Binding Sites , Brain/metabolism , Brain/pathology , Case-Control Studies , Cell Differentiation , Disease Progression , Female , Humans , Internal Ribosome Entry Sites/genetics , Male , Mice , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neurons/pathology , Ribosomes/metabolism , tau Proteins/biosynthesis
6.
EMBO Mol Med ; 13(4): e13243, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33821570

ABSTRACT

Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.


Subject(s)
Nanoparticles , Oligonucleotides , Gene Expression , Oligonucleotides, Antisense , RNA, Small Interfering
7.
BMC Genomics ; 22(1): 237, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33823787

ABSTRACT

BACKGROUND: Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu) are good fish species for aquaculture. The tambacu, individuals originating from the induced hybridization of the female tambaqui with the male pacu, present rapid growth and robustness, characteristics which have made the tambacu a good choice for Brazilian fish farms. Here, we used small RNA sequencing to examine global miRNA expression in the genotypes pacu (PC), tambaqui (TQ), and hybrid tambacu (TC), (Juveniles, n = 5 per genotype), to better understand the relationship between tambacu and its parental species, and also to clarify the mechanisms involved in tambacu muscle growth and maintenance based on miRNAs expression. RESULTS: Regarding differentially expressed (DE) miRNAs between the three genotypes, we observed 8 upregulated and 7 downregulated miRNAs considering TC vs. PC; 14 miRNAs were upregulated and 10 were downregulated considering TC vs. TQ, and 15 miRNAs upregulated and 9 were downregulated considering PC vs. TQ. The majority of the miRNAs showed specific regulation for each genotype pair, and no miRNA were shared between the 3 genotype pairs, in both up- and down-regulated miRNAs. Considering only the miRNAs with validated target genes, we observed the miRNAs miR-144-3p, miR-138-5p, miR-206-3p, and miR-499-5p. GO enrichment analysis showed that the main target genes for these miRNAs were grouped in pathways related to oxygen homeostasis, blood vessel modulation, and oxidative metabolism. CONCLUSIONS: Our global miRNA analysis provided interesting DE miRNAs in the skeletal muscle of pacu, tambaqui, and the hybrid tambacu. In addition, in the hybrid tambacu, we identified some miRNAs controlling important molecular muscle markers that could be relevant for the farming maximization.


Subject(s)
Characiformes , MicroRNAs , Animals , Brazil , Characiformes/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/genetics , Muscle, Skeletal
8.
Anal Chem ; 91(9): 5874-5880, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30994325

ABSTRACT

Circulating microRNAs have been identified as potential biomarkers for early detection, prognosis, and prediction of several diseases. Their use in clinical diagnostics has been limited by the lack of suitable detection techniques. Most of the current technologies suffer from requiring complex protocols, not yet able to deliver robust and cost-effective assays in the field of clinical diagnostics. In this work, we report the development of a breakthrough platform for profiling circulating microRNAs. The platform comprises a novel silicon photomultiplier-based reader in conjunction with a chemical-based method for nucleic acid detection. Accurate microRNAs profiling without extraction, pre-amplification, or pre-labeling of the target is now achievable. We designed and synthesized a set of reagents that combined the chemical-based method with a chemiluminescent reaction. The signals generated were read out using a novel, compact silicon photomultiplier-based reader. The platform sensitivity was determined by measuring known concentrations of hsa-miR-21-5p spike-ins. The limit of detection was calculated as 4.7 pmol/L. The platform was also successfully used to directly detect hsa-miR-21-5p in eight non-small cell lung cancer plasma samples. Levels of plasma hsa-miR-21-5p expression were also measured via TaqMan RT-qPCR. The successful integration of the unique chemical-based method for nucleic acid detection with the novel silicon photomultiplier-based reader created an innovative product (ODG platform) with diagnostic utility, for the direct qualitative and quantitative analysis of microRNA biomarkers in biological fluids.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Circulating MicroRNA/blood , Lung Neoplasms/blood , MicroRNAs/blood , Real-Time Polymerase Chain Reaction/methods , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Circulating MicroRNA/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , MicroRNAs/genetics , ROC Curve
9.
Neurobiol Aging ; 84: 240.e1-240.e12, 2019 12.
Article in English | MEDLINE | ID: mdl-30826067

ABSTRACT

The purpose of this study was to develop an easy and minimally invasive assay to detect a plasma miRNA profile in frontotemporal dementia (FTD) patients, with the final aim of discriminating between FTD patients and healthy controls (HCs). After a global miRNA profiling, significant downregulation of miR-663a, miR-502-3p, and miR-206 (p = 0.0001, p = 0.0002, and p = 0.02 respectively) in FTD patients was confirmed when compared with HCs in a larger case-control sample. Moreover, miR-663a and miR-502-3p showed significant differences in both genders, whereas miR-206, only in male subjects. To obtain a discriminating measure between FTD patients and HCs, we calculated a combined score of the 3 miRNAs by applying a Bayesian approach and obtaining a classifier with an accuracy of 84.4%. Moreover, for men, combined miRNA levels showed an excellent sensitivity (100%) and a good specificity (87.5%) in distinguishing FTD patients from HCs. All these findings open new hypotheses in the pathophysiology and new perspectives in the diagnosis of a complex pathology as FTD.


Subject(s)
Frontotemporal Dementia/genetics , Healthy Aging , MicroRNAs/blood , Frontotemporal Dementia/blood , Humans
10.
Sci Rep ; 8(1): 10476, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29992994

ABSTRACT

The dysbiosis of the oral microbiome is associated with both localized and systemic diseases. Modulating the resident microbial communities by the dietary consumption of probiotics has become an appealing means to promote host health by either restoring host-microbe balance or preventing dysbiosis. Most probiotics strategies target the intestinal microbiome, but little is known about their impact on the oral microbiome. We analyzed here the saliva microbiome from 21 volunteers, longitudinally collected before, during, and after consumption of a commercial probiotic and a standard yoghurt using 16S amplicon sequencing. The alpha diversity of the saliva microbiome had a statistically significant increase (P-value = 0.0011) in one of the groups that consumed the probiotic. The overall structure of the microbiome was however not significantly impacted by the probiotic, although oligotyping analysis revealed that both Streptococci and Lactobacilli present in the probiotic product persisted in the saliva microbiome. In contrast, non-probiotic yoghurt consumption had a lesser impact on the overall diversity and Lactobacillus and Streptococcus persistence. Our results suggest that consumption of commercial probiotics in healthy subjects increase the overall diversity of the oral cavity microbiome in the short term, but such dietary interventions are not able to substantially modify the structure of the microbiome.


Subject(s)
Microbiota/drug effects , Mouth/microbiology , Probiotics/pharmacology , Saliva/microbiology , Biodiversity , Female , Healthy Volunteers , Humans , Longitudinal Studies , Male , Probiotics/administration & dosage , RNA, Ribosomal, 16S/genetics , Time Factors , Young Adult
11.
J Alzheimers Dis ; 65(2): 455-464, 2018.
Article in English | MEDLINE | ID: mdl-30056425

ABSTRACT

Given the heterogeneous nature of frontotemporal dementia (FTD), sensitive biomarkers are greatly needed for the accurate diagnosis of this neurodegenerative disorder. Circulating miRNAs have been reported as promising biomarkers for neurodegenerative disorders and processes affecting the central nervous system, especially in aging. The objective of the study was to evaluate if some circulating miRNAs linked with apoptosis (miR-29b-3p, miR-34a-5p, miR-16-5p, miR-17-5p, miR-107, miR-19b-3p, let-7b-5p, miR-26b-5p, and 127-3p) were able to distinguish between FTD patients and healthy controls. For this study, we enrolled 127 subjects, including 54 patients with FTD, 20 patients with Alzheimer's disease (AD), and 53 healthy controls. The qRT-PCR analysis showed a downregulation of miR-127-3p in FTD compared to controls, while the levels of other miRNAs remained unchanged. Then, miR-127-3p expression was also analyzed in AD patients, finding a different expression between two patient groups. A receiver operating characteristic curve was then created for miR-127-3p to discriminate FTD versus AD (AUC: 0.8986), and versus healthy controls (AUC: 0.8057). In conclusion, miR-127-3p could help to diagnose FTD and to distinguish it from AD.


Subject(s)
Circulating MicroRNA/blood , Frontotemporal Dementia/blood , MicroRNAs/blood , Aged , Alzheimer Disease/blood , Biomarkers/blood , Diagnosis, Differential , Female , Humans , Male , Sensitivity and Specificity
12.
Front Cell Dev Biol ; 5: 86, 2017.
Article in English | MEDLINE | ID: mdl-29018797

ABSTRACT

Since their discovery and the advent of RNA interference, microRNAs have drawn enormous attention because of their ubiquitous involvement in cellular pathways from life to death, from metabolism to communication. It is also widely accepted that they possess an undeniable role in cancer both as tumor suppressors and tumor promoters modulating cell proliferation and migration, epithelial-mesenchymal transition and tumor cell invasion and metastasis. Moreover, microRNAs can even affect the tumor surrounding environment influencing angiogenesis and immune system activation and recruitment. The tight association of microRNAs with several cancer-related processes makes them undoubtedly connected to the effect of specific cancer drugs inducing either resistance or sensitization. In this context, personalized medicine through microRNAs arose recently with the discovery of single nucleotide polymorphisms in the target binding sites, in the sequence of the microRNA itself or in microRNA biogenesis related genes, increasing risk, susceptibility and progression of multiple types of cancer in different sets of the population. The depicted scenario implies that the overall variation displayed by these small non-coding RNAs have an impact on patient-specific pharmacokinetics and pharmacodynamics of cancer drugs, pushing on a rising need of personalized treatment. Indeed, microRNAs from either tissues or liquid biopsies are also extensively studied as valuable biomarkers for disease early recognition, progression and prognosis. Despite microRNAs being intensively studied in recent years, a comprehensive review describing these topics all in one is missing. Here we report an up-to-date and critical summary of microRNAs as tools for better understanding personalized cancer biogenesis, evolution, diagnosis and treatment.

13.
EMBO Mol Med ; 9(5): 545-557, 2017 05.
Article in English | MEDLINE | ID: mdl-28289078

ABSTRACT

The use of splice-switching antisense therapy is highly promising, with a wealth of pre-clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre-clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.


Subject(s)
Drug Delivery Systems/methods , Genetic Therapy/methods , Oligonucleotides, Antisense/administration & dosage , RNA Splicing , Animals , Drug Administration Routes , Drug Evaluation, Preclinical/methods , Humans , Oligonucleotides, Antisense/pharmacokinetics , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/toxicity , RNA Splicing/drug effects
14.
Front Mol Neurosci ; 9: 31, 2016.
Article in English | MEDLINE | ID: mdl-27199656

ABSTRACT

Progranulin (PGRN) is a secreted protein expressed ubiquitously throughout the body, including the brain, where it localizes in neurons and is activated microglia. Loss-of-function mutations in the GRN gene are an important cause of familial frontotemporal lobar degeneration (FTLD). PGRN has a neurotrophic and anti-inflammatory activity, and it is neuroprotective in several injury conditions, such as oxygen or glucose deprivation, oxidative injury, and hypoxic stress. Indeed, we have previously demonstrated that hypoxia induces the up-regulation of GRN transcripts. Several studies have shown microRNAs (miRNAs) involvement in hypoxia. Moreover, in FTLD patients with a genetic variant of GRN (rs5848), the reinforcement of miR-659-3p binding site has been suggested to be a risk factor. Here, we report that miR-659-3p interacts directly with GRN 3'UTR as shown by luciferase assay in HeLa cells and ELISA and Western Blot analysis in HeLa and Kelly cells. Moreover, we demonstrate the physical binding between GRN mRNA and miR-659-3p employing a miRNA capture-affinity technology in SK-N-BE and Kelly cells. In order to study miRNAs involvement in hypoxia-mediated up-regulation of GRN, we evaluated miR-659-3p levels in SK-N-BE cells after 24 h of hypoxic treatment, finding them inversely correlated to GRN transcripts. Furthermore, we analyzed an animal model of asphyxia, finding that GRN mRNA levels increased at post-natal day (pnd) 1 and pnd 4 in rat cortices subjected to asphyxia in comparison to control rats and miR-659-3p decreased at pnd 4 just when GRN reached the highest levels. Our results demonstrate the interaction between miR-659-3p and GRN transcript and the involvement of miR-659-3p in GRN up-regulation mediated by hypoxic/ischemic insults.

15.
Adv Exp Med Biol ; 889: 153-77, 2015.
Article in English | MEDLINE | ID: mdl-26659001

ABSTRACT

Lung cancer is the leading cause of cancer mortality worldwide. microRNAs (miRNAs) have been established as players with a relevant role in lung cancer development, epithelial-mesenchymal transition and response to therapy. Additionally, in the last decade, miRNAs, measured in resected tumor samples or in fine-needle aspirate samples have emerged as compelling biomarkers for tumor diagnosis, prognosis, and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole-blood have increasingly been explored in the last 5 years as less invasive biomarkers for the early detection of cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , MicroRNAs/genetics , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , MicroRNAs/blood , Prognosis , Sputum/metabolism
16.
Exp Suppl ; 106: 151-169, 2015.
Article in English | MEDLINE | ID: mdl-26608203

ABSTRACT

Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are caused by a combination of events that impair normal neuronal function. Although they are considered different disorders, there are overlapping features among them from the clinical, pathological, and genetic points of view. Synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities such as axonal transport defects normally precede the neuronal loss that is a relatively late event. The diagnosis of many neurodegenerative diseases is mainly based on patient's cognitive function analysis, and the development of diagnostic methods is complicated by the brain's capacity to compensate for neuronal loss over a long period of time. This results in the late clinical manifestation of symptoms, a time when successful treatment is no longer feasible. Thus, a noninvasive diagnostic method based on early events detection is particularly important. In the last years, some biomarkers expressed in human body fluids have been proposed. microRNAs (miRNAs), with their high stability, tissue- or cell type-specific expression, lower cost, and shorter time in the assay development, could constitute a good tool to obtain an early disease diagnosis for a wide number of human pathologies, including neurodegenerative diseases. The possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative disorders is a highly promising approach for developing minimally invasive screening tests and to identify new therapeutic targets.

17.
Invest Ophthalmol Vis Sci ; 56(8): 4846-56, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26218913

ABSTRACT

PURPOSE: Mutations in CACNA2D4 exon 25 cause photoreceptor dysfunction in humans (c.2406C→A mutation) and mice (c.2451insC mutation). We investigated the feasibility of an exon-skipping therapeutic approach by evaluating the splicing patterns and functional role of targeted exons. METHODS: Splicing of the targeted α2δ4 (CACNA2D4) exons in presence and absence of the mutation was assessed by RT-PCR in vivo on mouse retinae and in vitro in HEK293T cells using splicing-reporter minigenes. Whole-cell patch-clamp recordings were performed to evaluate the impact of different Cacna2d4 variants on the biophysical properties of Cav1.4 L-type calcium channels (CACNA1F). RESULTS: Splicing analysis revealed the presence of a previously unknown splicing isoform of α2δ4 in the retina that truncates the gene open reading frame (ORF) in a similar way as the c.2451insC mutation. This isoform originates from alternative splicing of exon 25 (E25) with a new exon (E25b). Moreover, the c.2451insC mutation has an effect on splicing and increases the proportion of transcripts including E25b. Our electrophysiological analyses showed that only full-length α2δ4 was able to increase Cav1.4/ß3-mediated currents while all other α2δ4 variants did not mediate such effect. CONCLUSIONS: The designed exon-skipping strategy is not applicable because the resulting skipped α2δ4 are nonfunctional. α2δ4 E25b splicing variant is normally present in mouse retina and mimics the effect of c.2451insC mutation. Since this variant does not promote significant Cav1.4-mediated calcium current, it could possibly mediate a different function, unrelated to modulation of calcium channel properties at the photoreceptor terminals.


Subject(s)
Calcium Channels, L-Type/genetics , Mutation , RNA/genetics , Retina/metabolism , Retinal Dystrophies/genetics , Alternative Splicing , Animals , Blotting, Western , Calcium Channels, L-Type/metabolism , Disease Models, Animal , Exons , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Patch-Clamp Techniques , RNA Splicing , Retina/pathology , Retinal Dystrophies/metabolism , Retinal Dystrophies/pathology , Reverse Transcriptase Polymerase Chain Reaction
18.
Front Mol Neurosci ; 8: 9, 2015.
Article in English | MEDLINE | ID: mdl-25852467

ABSTRACT

Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.

19.
World J Clin Oncol ; 5(4): 604-20, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25302165

ABSTRACT

Lung cancer is the leading cause of cancer mortality worldwide. Its high mortality is due to the poor prognosis of the disease caused by a late disease presentation, tumor heterogeneities within histological subtypes, and the relatively limited understanding of tumor biology. Importantly, lung cancer histological subgroups respond differently to some chemotherapeutic substances and side effects of some therapies appear to vary between subgroups. Biomarkers able to stratify for the subtype of lung cancer, prognosticate the course of disease, or predict the response to treatment are in high demand. In the last decade, microRNAs (miRNAs), measured in resected tumor samples or in fine needle aspirate samples have emerged as biomarkers for tumor diagnosis, prognosis and prediction of response to treatment, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole blood have increasingly been explored in the last five years as less invasive biomarkers for the early detection of cancers. In this review we cover the increasing amounts of data that have accumulated in the last ten years on the use of miRNAs as lung cancer biomarkers.

20.
Invest Ophthalmol Vis Sci ; 55(5): 3285-94, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24867912

ABSTRACT

Splicing is an important and highly regulated step in gene expression. The ability to modulate it can offer a therapeutic option for many genetic disorders. Antisense-mediated splicing-correction approaches have recently been successfully exploited for some genetic diseases, and are currently demonstrating safety and efficacy in different clinical trials. Their application for the treatment of retinal dystrophies could potentially solve a vast panel of cases, as illustrated by the abundance of mutations that could be targeted and the versatility of the technique. In this review, we will give an insight of the different therapeutic strategies, focusing on the current status of their application for retinal dystrophies.


Subject(s)
Gene Expression Regulation , Genetic Therapy/methods , Oligonucleotides, Antisense/genetics , RNA Splicing/genetics , RNA/genetics , Retinal Dystrophies/therapy , Humans , Oligonucleotides, Antisense/biosynthesis , RNA/metabolism , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...