Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 11963, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427669

ABSTRACT

Interest has grown in using mindfulness meditation to treat conditions featuring excessive impulsivity. However, while prior studies find that mindfulness practice can improve attention, it remains unclear whether it improves other cognitive faculties whose deficiency can contribute to impulsivity. Here, an eight-week mindfulness intervention did not reduce impulsivity on the go/no-go task or Barratt Impulsiveness Scale (BIS-11), nor produce changes in neural correlates of impulsivity (i.e. frontostriatal gray matter, functional connectivity, and dopamine levels) compared to active or wait-list control groups. Separately, long-term meditators (LTMs) did not perform differently than meditation-naïve participants (MNPs) on the go/no-go task. However, LTMs self-reported lower attentional impulsivity, but higher motor and non-planning impulsivity on the BIS-11 than MNPs. LTMs had less striatal gray matter, greater cortico-striatal-thalamic functional connectivity, and lower spontaneous eye-blink rate (a physiological dopamine indicator) than MNPs. LTM total lifetime practice hours (TLPH) did not significantly relate to impulsivity or neurobiological metrics. Findings suggest that neither short- nor long-term mindfulness practice may be effective for redressing impulsive behavior derived from inhibitory motor control or planning capacity deficits in healthy adults. Given the absence of TLPH relationships to impulsivity or neurobiological metrics, differences between LTMs and MNPs may be attributable to pre-existing differences.


Subject(s)
Impulsive Behavior , Meditation/methods , Meditation/psychology , Mindfulness , Attention , Blinking , Brain Mapping , Female , Gray Matter/anatomy & histology , Gray Matter/physiology , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Psychomotor Performance , Rest , Time Factors
2.
Exp Brain Res ; 237(6): 1397-1407, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30887077

ABSTRACT

A cellular degeneration of two thalamic nuclei belonging to the "limbic thalamus", i.e., the anteroventral (AV) and mediodorsal (MD) nuclei, has been shown in patients suffering from Fatal Familial Insomnia (FFI), a lethal prion disease characterized by autonomic activation and severe insomnia. To better assess the physiological role of these nuclei in autonomic and sleep regulation, c-Fos expression was measured in rats during a prolonged exposure to low ambient temperature (Ta, - 10 °C) and in the first hours of the subsequent recovery period at normal laboratory Ta (25 °C). Under this protocol, the thermoregulatory and autonomic activation led to a tonic increase in waking and to a reciprocal depression in sleep occurrence, which was more evident for REM sleep. These effects were followed by a clear REM sleep rebound and by a rebound of Delta power during non-REM sleep in the following recovery period. In the anterior thalamic nuclei, c-Fos expression was (1) larger during the activity rather than the rest period in the baseline; (2) clamped at a level in-between the normal daily variation during cold exposure; (3) not significantly affected during the recovery period in comparison to the time-matched baseline. No significant changes were observed in either the MD or the paraventricular thalamic nucleus, which is also part of the limbic thalamus. The observed changes in the activity of the anterior thalamic nuclei appear, therefore, to be more specifically related to behavioral activation than to autonomic or sleep regulation.


Subject(s)
Anterior Thalamic Nuclei/metabolism , Autonomic Nervous System/physiology , Body Temperature Regulation/physiology , Proto-Oncogene Proteins c-fos/metabolism , Sleep Stages/physiology , Wakefulness/physiology , Animals , Electroencephalography , Male , Mediodorsal Thalamic Nucleus/metabolism , Midline Thalamic Nuclei/metabolism , Rats , Rats, Sprague-Dawley , Sleep, REM/physiology , Sleep, Slow-Wave/physiology
3.
Eur J Neurosci ; 48(6): 2310-2321, 2018 09.
Article in English | MEDLINE | ID: mdl-30144201

ABSTRACT

Our recent finding of a meditation-related increase in low-frequency NREM sleep EEG oscillatory activities peaking in the theta-alpha range (4-12 Hz) was not predicted. From a consolidated body of research on sleep homeostasis, we would expect a change peaking in slow wave activity (1-4 Hz) following an intense meditation session. Here we compared these changes in sleep with the post-meditation changes in waking rest scalp power to further characterize their functional significance. High-density EEG recordings were acquired from 27 long-term meditators (LTM) on three separate days at baseline and following two 8-hr sessions of either mindfulness or compassion-and-loving-kindness meditation. Thirty-one meditation-naïve participants (MNP) were recorded at the same time points. As a common effect of meditation practice, we found increases in low and fast waking EEG oscillations for LTM only, peaking at eight and 15 Hz respectively, over prefrontal, and left centro-parietal electrodes. Paralleling our previous findings in sleep, there was no significant difference between meditation styles in LTM as well as no difference between matched sessions in MNP. Meditation-related changes in wakefulness and NREM sleep were correlated across space and frequency. A significant correlation was found in the EEG low frequencies (<12 Hz). Since the peak of coupling was observed in the theta-alpha oscillatory range, sleep homeostatic response to meditation practice is not sufficient to explain our findings. Another likely phenomenon into play is a reverberation of meditation-related processes during subsequent sleep. Future studies should ascertain the interplay between these processes in promoting the beneficial effects of meditation practice.


Subject(s)
Brain/physiology , Homeostasis/physiology , Meditation/psychology , Sleep/physiology , Adult , Aged , Electroencephalography/psychology , Female , Humans , Male , Middle Aged , Rest/physiology , Wakefulness/physiology
5.
Neuroimage ; 157: 288-296, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28602816

ABSTRACT

Studies consistently implicate aberrance of the brain's reward-processing and decision-making networks in disorders featuring high levels of impulsivity, such as attention-deficit hyperactivity disorder, substance use disorder, and psychopathy. However, less is known about the neurobiological determinants of individual differences in impulsivity in the general population. In this study of 105 healthy adults, we examined relationships between impulsivity and three neurobiological metrics - gray matter volume, resting-state functional connectivity, and spontaneous eye-blink rate, a physiological indicator of central dopaminergic activity. Impulsivity was measured both by performance on a task of behavioral inhibition (go/no-go task) and by self-ratings of attentional, motor, and non-planning impulsivity using the Barratt Impulsiveness Scale (BIS-11). Overall, we found that less gray matter in medial orbitofrontal cortex and paracingulate gyrus, greater resting-state functional connectivity between nodes of the basal ganglia-thalamo-cortical network, and lower spontaneous eye-blink rate were associated with greater impulsivity. Specifically, less prefrontal gray matter was associated with higher BIS-11 motor and non-planning impulsivity scores, but was not related to task performance; greater correlated resting-state functional connectivity between the basal ganglia and thalamus, motor cortices, and prefrontal cortex was associated with worse no-go trial accuracy on the task and with higher BIS-11 motor impulsivity scores; lower spontaneous eye-blink rate was associated with worse no-go trial accuracy and with higher BIS-11 motor impulsivity scores. These data provide evidence that individual differences in impulsivity in the general population are related to variability in multiple neurobiological metrics in the brain's reward-processing and decision-making networks.


Subject(s)
Basal Ganglia/physiology , Blinking/physiology , Connectome/methods , Gray Matter/anatomy & histology , Impulsive Behavior/physiology , Inhibition, Psychological , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Adult , Basal Ganglia/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/physiology
6.
Connectomics Neuroimaging (2017) ; 10511: 134-142, 2017.
Article in English | MEDLINE | ID: mdl-29708220

ABSTRACT

Meditation practice as a non-pharmacological intervention to provide health related benefits has generated much neuroscientific interest in its effects on brain activity. Electroencephalogram (EEG), an imaging modality known for its inexpensive procedure and excellent temporal resolution, is often utilized to investigate the neuroplastic effects of meditation under various experimental conditions. In these studies, EEG signals are routinely mapped on a topographic layout of channels to visualize variations in spectral powers within certain frequency ranges. Topological data analysis (TDA) of the topographic power maps modeled as graphs can provide different insight to EEG signals than standard statistical methods. A highly effective TDA technique is persistent homology, which reveals topological characteristics of a power map by tracking feature changes throughout a filtration process on the graph structure of the map. In this paper, we propose a novel inference procedure based on filtrations induced by sublevel sets of the power maps of high-density EEG signals. We apply the pipeline to simulated and real data, where we compare the persistent homological features of topographic maps of spectral powers in high-frequency bands of EEG signals recorded on long-term meditators and meditation-naive practitioners.

7.
PLoS One ; 11(2): e0148961, 2016.
Article in English | MEDLINE | ID: mdl-26900914

ABSTRACT

STUDY OBJECTIVES: We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity. DESIGN: High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention. SETTING: Sound-attenuated sleep research room. PATIENTS OR PARTICIPANTS: Twenty-four long-term meditators and twenty-four meditation-naïve controls. INTERVENTIONS: Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation. MEASUREMENTS AND RESULTS: We found an increase in EEG low-frequency oscillatory activities (1-12 Hz, centered around 7-8 Hz) over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25-40 Hz). There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience. CONCLUSIONS: This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.


Subject(s)
Meditation , Sleep Stages , Adult , Analysis of Variance , Brain/physiology , Electroencephalography , Female , Humans , Male , Mental Health , Middle Aged , Self Report , Sleep/physiology , Social Class , Socioeconomic Factors
8.
Neuroimage ; 102 Pt 2: 540-7, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25139002

ABSTRACT

BACKGROUND: We recently found marked deficits in sleep spindles, non-rapid eye movement (NREM) sleep oscillations that are generated within the thalamus and then amplified and sustained in the cortex, in patients with schizophrenia compared to both healthy and psychiatric controls. Here, we investigated the thalamic and cortical contributions to these sleep spindle deficits. METHODS: Anatomical volume of interest analysis (i.e., thalamic volumes) and electroencephalogram (EEG) source modeling (i.e., spindle-related cortical currents) were performed in patients with schizophrenia and healthy comparison subjects. FINDINGS: Schizophrenia patients had reduced mediodorsal (MD) thalamic volumes, especially on the left side, compared to healthy controls, whereas whole thalami and lateral geniculate nuclei did not differ between groups. Furthermore, left MD volumes were strongly correlated with the number of scalp-recorded spindles in an anterior frontal region, and cortical currents underlying these anterior frontal spindles were localized in the prefrontal cortex, in Brodmann area (BA) 10. Finally, prefrontal currents at the peak of spindle activity were significantly reduced in schizophrenia patients and correlated with their performance in an abstraction/working memory task. CONCLUSION: Altogether, these findings point to deficits in a specific thalamo-cortical circuitry in schizophrenia, which is associated with some cognitive deficits commonly reported in those patients.


Subject(s)
Brain Waves , Mediodorsal Thalamic Nucleus/physiopathology , Prefrontal Cortex/physiopathology , Schizophrenia/physiopathology , Sleep/physiology , Adult , Electroencephalography , Female , Humans , Male , Mediodorsal Thalamic Nucleus/pathology , Schizophrenia/pathology
9.
Neuroimage ; 100: 237-43, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24910071

ABSTRACT

The role of bottom-up and top-down connections during visual perception and the formation of mental images was examined by analyzing high-density EEG recordings of brain activity using two state-of-the-art methods for assessing the directionality of cortical signal flow: state-space Granger causality and dynamic causal modeling. We quantified the directionality of signal flow in an occipito-parieto-frontal cortical network during perception of movie clips versus mental replay of the movies and free visual imagery. Both Granger causality and dynamic causal modeling analyses revealed an increased top-down signal flow in parieto-occipital cortices during mental imagery as compared to visual perception. These results are the first direct demonstration of a reversal of the predominant direction of cortical signal flow during mental imagery as compared to perception.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiology , Electroencephalography/methods , Imagination/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Models, Statistical , Young Adult
10.
PLoS One ; 8(8): e73417, 2013.
Article in English | MEDLINE | ID: mdl-24015304

ABSTRACT

Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25-40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.


Subject(s)
Brain Waves/physiology , Meditation , Occipital Lobe/physiology , Parietal Lobe/physiology , Sleep Stages/physiology , Adult , Female , Humans , Male , Middle Aged
11.
J Sleep Res ; 19(3): 394-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20374448

ABSTRACT

In different species, rapid eye movement sleep (REMS) is characterized by a thermoregulatory impairment. It has been postulated that this impairment depends on a general insufficiency in the hypothalamic integration of autonomic function. This study aims to test this hypothesis by assessing the hypothalamic regulation of body fluid osmolality during the different wake-sleep states in the rat. Arginine-vasopressin (AVP) plasma levels were determined following intracerebroventricular (ICV) infusions of artificial cerebrospinal fluid (aCSF), either isotonic or made hypertonic by the addition of NaCl at three different concentrations (125, 250 and 500 mM). Animals were implanted with a cannula within a lateral cerebral ventricle for ICV infusions and with electrodes for the recording of the electroencephalogram. ICV infusions were made in different animals during Wake, REMS or non-REM sleep (NREMS). The results show that ICV infusion of hypertonic aCSF during REMS induced an increase in AVP plasma levels that was not different from that observed during either Wake or NREMS. These results suggest that the thermoregulatory impairment that characterizes REMS does not depend on a general impairment in the hypothalamic control of body homeostasis.


Subject(s)
Hypothalamus/physiology , Sleep/physiology , Water-Electrolyte Balance/physiology , Animals , Arginine Vasopressin/blood , Cerebrospinal Fluid/physiology , Electroencephalography , Injections, Intraventricular , Male , Rats , Rats, Sprague-Dawley , Sleep, REM/physiology , Wakefulness/physiology
12.
Eur J Neurosci ; 30(4): 651-61, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19686475

ABSTRACT

Thermoregulation is known to interfere with sleep, possibly due to a functional interaction at the level of the preoptic area (POA). Exposure to low ambient temperature (T(a)) induces sleep deprivation, which is followed by sleep rebound after a return to laboratory T(a). As two POA subregions, the ventrolateral preoptic nucleus (VLPO) and the median preoptic nucleus (MnPO), have been proposed to have a role in sleep-related processes, the expression of c-Fos and the phosphorylated form of the cAMP/Ca(2+)-responsive element-binding protein (P-CREB) was investigated in these nuclei during prolonged exposure to a T(a) of -10 degrees C and in the early phase of the recovery period. Moreover, the dynamics of the sleep rebound during recovery were studied in a separate group of animals. The results show that c-Fos expression increased in both the VLPO and the MnPO during cold exposure, but not in a specific subregion within the VLPO cluster counting grid (VLPO T-cluster). During the recovery, concomitantly with a large rapid eye movement sleep (REMS) rebound and an increase in delta power during non-rapid eye movement sleep (NREMS), c-Fos expression was high in both the VLPO and the MnPO and, specifically, in the VLPO T-cluster. In both nuclei, P-CREB expression showed spontaneous variations in basal conditions. During cold exposure, an increase in expression was observed in the MnPO, but not in the VLPO, and a decrease was observed in both nuclei during recovery. Dissociation in the changes observed between c-Fos expression and P-CREB levels, which were apparently subject to state-related non-regulatory modulation, suggests that the sleep-related changes observed in c-Fos expression do not depend on a P-CREB-mediated pathway.


Subject(s)
Neurons/metabolism , Preoptic Area/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Sleep/physiology , Wakefulness/physiology , Analysis of Variance , Animals , Antibodies, Phospho-Specific/metabolism , Cell Count , Cold Temperature , Cyclic AMP Response Element-Binding Protein/metabolism , Electroencephalography , Fourier Analysis , Immunohistochemistry , Male , Preoptic Area/physiology , Rats , Rats, Sprague-Dawley , Signal Processing, Computer-Assisted , Sleep Deprivation/metabolism
13.
Sleep ; 31(5): 708-15, 2008 May.
Article in English | MEDLINE | ID: mdl-18517040

ABSTRACT

STUDY OBJECTIVES: Exposure to low ambient temperature (Ta) depresses REM sleep (REMS) occurrence. In this study, both short and long-term homeostatic aspects of REMS regulation were analyzed during cold exposure and during subsequent recovery at Ta 24 degrees C. DESIGN: EEG activity, hypothalamic temperature, and motor activity were studied during a 24-h exposure to Tas ranging from 10 degrees C to -10 degrees C and for 4 days during recovery. SETTING: Laboratory of Physiological Regulation during the Wake-Sleep Cycle, Department of Human and General Physiology, Alma Mater Studiorum-University of Bologna. SUBJECTS: 24 male albino rats. INTERVENTIONS: Animals were implanted with electrodes for EEG recording and a thermistor to measure hypothalamic temperature. MEASUREMENTS AND RESULTS: REMS occurrence decreased proportionally with cold exposure, but a fast compensatory REMS rebound occurred during the first day of recovery when the previous loss went beyond a "fast rebound" threshold corresponding to 22% of the daily REMS need. A slow REMS rebound apparently allowed the animals to fully restore the previous REMS loss during the following 3 days of recovery. CONCLUSION: Comparing the present data on rats with data from earlier studies on cats and humans, it appears that small mammals have less tolerance for REMS loss than large ones. In small mammals, this low tolerance may be responsible on a short-term basis for the shorter wake-sleep cycle, and on long-term basis, for the higher percentage of REMS that is quickly recovered following REMS deprivation.


Subject(s)
Body Size/physiology , Body Temperature Regulation/physiology , Cold Temperature , Homeostasis/physiology , Sleep, REM/physiology , Animals , Cerebral Cortex/physiopathology , Electroencephalography , Fourier Analysis , Hypothalamus/physiopathology , Male , Motor Activity/physiology , Rats , Rats, Sprague-Dawley , Signal Processing, Computer-Assisted , Sleep Deprivation/physiopathology , Theta Rhythm
14.
J Sleep Res ; 17(2): 166-79, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18482105

ABSTRACT

In the albino rat, a REM sleep (REMS) onset can be induced with a high probability and a short latency when the light is suddenly turned off (dark pulse, DP) during non-REM sleep (NREMS). The aim of this study was to investigate to what extent DP delivery could overcome the integrative thermoregulatory mechanisms that depress REMS occurrence during exposure to low ambient temperature (Ta). To this aim, the efficiency of a non-rhythmical repetitive DP (3 min each) delivery during the first 6-h light period of a 12 h:12 h light-dark cycle in inducing REMS was studied in the rat, through the analysis of electroencephalogram, electrocardiogram, hypothalamic temperature and motor activity at different Tas. The results showed that DP delivery triggers a transition from NREMS to REMS comparable to that which occurs spontaneously. However, the efficiency of DP delivery in inducing REMS was reduced during cold exposure to an extent comparable with that observed in spontaneous REMS occurrence. Such impairment was associated with low Delta activity and high sympathetic tone when DPs were delivered. Repetitive DP administration increased REMS amount during the delivery period and a subsequent negative REMS rebound was observed. In conclusion, DP delivery did not overcome the integrative thermoregulatory mechanisms that depress REMS in the cold. These results underline the crucial physiological meaning of the mutual exclusion of thermoregulatory activation and REMS occurrence, and support the hypothesis that the suspension of the central control of body temperature is a prerequisite for REMS occurrence.


Subject(s)
Body Temperature Regulation/physiology , Cerebral Cortex/physiology , Cold Temperature , Darkness , Electroencephalography , Signal Processing, Computer-Assisted , Sleep, REM/physiology , Animals , Autonomic Nervous System/physiology , Brain Stem/physiology , Circadian Rhythm/physiology , Delta Rhythm , Fourier Analysis , Hypothalamus, Anterior/physiology , Male , Nerve Net/physiology , Photic Stimulation , Polysomnography , Preoptic Area , Rats , Rats, Sprague-Dawley , Reaction Time/physiology , Retina/physiology , Sleep/physiology , Sympathetic Nervous System/physiology , Visual Pathways/physiology
15.
Behav Brain Res ; 187(2): 254-61, 2008 Mar 05.
Article in English | MEDLINE | ID: mdl-17964671

ABSTRACT

The effects of a single intraperitoneal administration of lithium, a drug used to prevent the recurrence of mania in bipolar disorders, were determined in the rat by studying changes in: (i) the wake-sleep cycle; (ii) autonomic parameters (hypothalamic and tail temperature, heart rate); (iii) the capacity to accumulate cAMP and IP(3) in the preoptic-anterior hypothalamic region (PO-AH) and in the cerebral cortex (CC) under an hypoxic stimulation at normal laboratory and at low ambient temperature (T(a)). In the immediate hours following the injection, lithium induced: (i) a significant reduction in REM sleep; (ii) a non-significant reduction in the delta power density of the EEG in NREM sleep; (iii) a significant decrease in the concentration of cAMP in PO-AH at normal laboratory T(a); (iv) a significant increase of IP(3) concentration in CC following exposure to low T(a). The earliest and most sensitive effects of lithium appear to be those concerning sleep. These changes are concomitant with biochemical effects that, in spite of a systemic administration of the substance, may be differentiated according to the second messenger involved, the brain region and the ambient condition.


Subject(s)
Antimanic Agents/pharmacology , Body Temperature Regulation/drug effects , Brain/drug effects , Lithium Chloride/pharmacology , Second Messenger Systems/drug effects , Sleep, REM/drug effects , Analysis of Variance , Animals , Autonomic Nervous System/drug effects , Brain/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cyclic AMP/metabolism , Electroencephalography/drug effects , Heart Rate/drug effects , Hypothalamus/drug effects , Hypoxia , Inositol 1,4,5-Trisphosphate/metabolism , Male , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...