Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 53(3): 316-329.e5, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32302543

ABSTRACT

All animals have evolved the ability to survive nutrient deprivation, and nutrient signaling pathways are conserved modulators of health and disease. In C. elegans, late-larval starvation provokes the adult reproductive diapause (ARD), a long-lived quiescent state that enables survival for months without food, yet underlying molecular mechanisms remain unknown. Here, we show that ARD is distinct from other forms of diapause, showing little requirement for canonical longevity pathways, autophagy, and fat metabolism. Instead it requires the HLH-30/TFEB transcription factor to promote the morphological and physiological remodeling involved in ARD entry, survival, and recovery, suggesting that HLH-30 is a master regulator of reproductive quiescence. HLH-30 transcriptome and genetic analyses reveal that Max-like HLH factors, AMP-kinase, mTOR, protein synthesis, and mitochondrial fusion are target processes that promote ARD longevity. ARD thus rewires metabolism to ensure long-term survival and may illuminate similar mechanisms acting in stem cell quiescence and long-term fasting.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Cellular Senescence , Gene Expression Regulation , Longevity , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Signal Transduction , Transcriptome
2.
iScience ; 23(3): 100887, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32086012

ABSTRACT

Activation of the hexosamine pathway (HP) through gain-of-function mutations in its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) ameliorates proteotoxicity and increases lifespan in Caenorhabditis elegans. Here, we investigate the role of the HP in mammalian protein quality control. In mouse neuronal cells, elevation of HP activity led to phosphorylation of both PERK and eIF2α as well as downstream ATF4 activation, identifying the HP as a modulator of the integrated stress response (ISR). Increasing uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) levels through GFAT1 gain-of-function mutations or supplementation with the precursor GlcNAc reduces aggregation of the polyglutamine (polyQ) protein Ataxin-3. Blocking PERK signaling or autophagy suppresses this effect. In C. elegans, overexpression of gfat-1 likewise activates the ISR. Consistently, co-overexpression of gfat-1 and proteotoxic polyQ peptides in muscles reveals a strong protective cell-autonomous role of the HP. Thus, the HP has a conserved role in improving protein quality control through modulation of the ISR.

SELECTION OF CITATIONS
SEARCH DETAIL
...