Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 184(14): 3591-3592, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34242559

ABSTRACT

ESCRT-III proteins, which form filaments that deform, bud, and sever membranes, are found in eukaryotes and some archaea. Three studies in this issue of Cell reveal that PspA and Vipp1 are bacterial and cyanobacterial members of the ESCRT-III superfamily, indicating it is even more ubiquitous and ancient than previously thought.


Subject(s)
Endosomal Sorting Complexes Required for Transport
2.
Nat Commun ; 9(1): 5187, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518883

ABSTRACT

Endocytic and recycling pathways generate cargo-laden transport carriers by membrane fission. Classical dynamins, which generate transport carriers during endocytosis, constrict and cause fission of membrane tubes in response to GTP hydrolysis. Relatively, less is known about the ATP-binding Eps15-homology domain-containing protein1 (EHD1), a dynamin family member that functions at the endocytic-recycling compartment. Here, we show using cross complementation assays in C. elegans that EHD1's membrane binding and ATP hydrolysis activities are necessary for endocytic recycling. Further, we show that ATP-bound EHD1 forms membrane-active scaffolds that bulge tubular model membranes. ATP hydrolysis promotes scaffold self-assembly, causing the bulge to extend and thin down intermediate regions on the tube. On tubes below 25 nm in radius, such thinning leads to scission. Molecular dynamics simulations corroborate this scission pathway. Deletion of N-terminal residues causes defects in stable scaffolding, scission and endocytic recycling. Thus, ATP hydrolysis-dependent membrane remodeling links EHD1 functions to endocytic recycling.


Subject(s)
Adenosine Triphosphate/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Endocytosis , Amino Acid Motifs , Animals , Biological Transport , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Hydrolysis , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...