Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 42(10): 3168-3181, 2021 07.
Article in English | MEDLINE | ID: mdl-33942444

ABSTRACT

Understanding decision-making in complex and dynamic environments is relevant for designing strategies targeting safety improvements and error rate reductions. However, studies evaluating brain dynamics in realistic situations are scarce in the literature. Given the evidence that specific microstates may be associated with perception and attention, in this work we explored for the first time the application of the microstate model in an ecological, dynamic and complex scenario. More specifically, we evaluated elite helicopter pilots during engine-failure missions in the vicinity of the so called "dead man's curve," which establishes the operational limits for a safe landing after the execution of a recovery maneuver (autorotation). Pilots from the Brazilian Air Force flew a AS-350 helicopter in a certified aerodrome and physiological sensor data were synchronized with the aircraft's flight test instrumentation. We assessed these neural correlates during maneuver execution, by comparing their modulations and source reconstructed activity with baseline epochs before and after flights. We show that the topographies of our microstate templates with 4, 5, and 6 classes resemble the literature, and that a distinct modulation characterizes decision-making intervals. Moreover, the source reconstruction result points to a differential activity in the medial prefrontal cortex, which is associated to emotional regulation circuits in the brain. Our results suggest that microstates are promising neural correlates to evaluate realistic situations, even in a challenging and intrinsically noisy environment. Furthermore, it strengthens their usage and expands their application for studying cognition under more realistic conditions.


Subject(s)
Aircraft , Awareness/physiology , Pilots , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Thinking/physiology , Adult , Electroencephalography , Humans , Male , Middle Aged , Military Personnel
2.
Front Neural Circuits ; 11: 114, 2017.
Article in English | MEDLINE | ID: mdl-29375324

ABSTRACT

Accumulating evidence suggests that neural interactions are distributed and relate to animal behavior, but many open questions remain. The neural assembly hypothesis, formulated by Hebb, states that synchronously active single neurons may transiently organize into functional neural circuits-neuronal assemblies (NAs)-and that would constitute the fundamental unit of information processing in the brain. However, the formation, vanishing, and temporal evolution of NAs are not fully understood. In particular, characterizing NAs in multiple brain regions over the course of behavioral tasks is relevant to assess the highly distributed nature of brain processing. In the context of NA characterization, active tactile discrimination tasks with rats are elucidative because they engage several cortical areas in the processing of information that are otherwise masked in passive or anesthetized scenarios. In this work, we investigate the dynamic formation of NAs within and among four different cortical regions in long-range fronto-parieto-occipital networks (primary somatosensory, primary visual, prefrontal, and posterior parietal cortices), simultaneously recorded from seven rats engaged in an active tactile discrimination task. Our results first confirm that task-related neuronal firing rate dynamics in all four regions is significantly modulated. Notably, a support vector machine decoder reveals that neural populations contain more information about the tactile stimulus than the majority of single neurons alone. Then, over the course of the task, we identify the emergence and vanishing of NAs whose participating neurons are shown to contain more information about animal behavior than randomly chosen neurons. Taken together, our results further support the role of multiple and distributed neurons as the functional unit of information processing in the brain (NA hypothesis) and their link to active animal behavior.


Subject(s)
Cerebral Cortex/physiology , Discrimination, Psychological/physiology , Neurons/physiology , Touch Perception/physiology , Action Potentials , Animals , Electrodes, Implanted , Male , Neural Pathways/physiology , Neuronal Plasticity , Neuropsychological Tests , Rats, Long-Evans , Signal Processing, Computer-Assisted , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...