Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 14(11): 1130-4, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26413986

ABSTRACT

Charge-transfer (CT) states, bound combinations of an electron and a hole on separate molecules, play a crucial role in organic optoelectronic devices. We report direct nanoscale imaging of the transport of long-lived CT states in molecular organic donor-acceptor blends, which demonstrates that the bound electron-hole pairs that form the CT states move geminately over distances of 5-10 nm, driven by energetic disorder and diffusion to lower energy sites. Magnetic field dependence reveals a fluctuating exchange splitting, indicative of a variation in electron-hole spacing during diffusion. The results suggest that the electron-hole pair of the CT state undergoes a stretching transport mechanism analogous to an 'inchworm' motion, in contrast to conventional transport of Frenkel excitons. Given the short exciton lifetimes characteristic of bulk heterojunction organic solar cells, this work confirms the potential importance of CT state transport, suggesting that CT states are likely to diffuse farther than Frenkel excitons in many donor-acceptor blends.

2.
Nano Lett ; 13(5): 1898-902, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23427820

ABSTRACT

The realization of an integrated diamond photonic platform, based on a thin single crystal diamond film on top of a silicon dioxide/silicon substrate, is reported. Using this approach, we demonstrate high-quality factor single crystal diamond race-track resonators, operating at near-infrared wavelengths (1550 nm). The devices are integrated with low-loss diamond waveguides terminated with polymer pads (spot size converters) to facilitate in- (out-) coupling of light from (to) an optical fiber. Optical characterization of these resonators reveal quality factors as high as ~250,000 and overall insertion losses as low as 1 dB/facet. Scattering induced mode splitting as well as signatures of nonlinear effects such as optical bistability are observed at an input pump power of ~100 mW in the waveguides.

SELECTION OF CITATIONS
SEARCH DETAIL
...