Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(2): 021301, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701326

ABSTRACT

On January 14, 2019, the Major Atmospheric Gamma Imaging Cherenkov telescopes detected GRB 190114C above 0.2 TeV, recording the most energetic photons ever observed from a gamma-ray burst. We use this unique observation to probe an energy dependence of the speed of light in vacuo for photons as predicted by several quantum gravity models. Based on a set of assumptions on the possible intrinsic spectral and temporal evolution, we obtain competitive lower limits on the quadratic leading order of speed of light modification.

2.
Environ Sci Technol ; 45(23): 10243-9, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22032802

ABSTRACT

Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration.


Subject(s)
Carbon/chemistry , Sodium Chloride/chemistry , Water/chemistry , Porosity
3.
Langmuir ; 21(5): 1758-65, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15723470

ABSTRACT

The present study investigates the change in the shape of oil droplets immersed in an ionic surfactant solution when the droplets are in contact with metal surfaces to which an electrical potential is applied. The three-phase system of aqueous solution-oil-steel was subjected to low-voltage electric potentials, which resulted in sometimes dramatic changes in droplet shape and wetting. This electric potential was applied to the conductive steel surface directly, and the counter electrode was immersed in the solution. Changes in both the shape and wetting extent of hexadecane and phenylmethyl polysiloxane were observed for voltages between +/-3.0 V in both sodium dodecyl sulfate and cetyl trimethylammonium bromide solutions. The droplets' behavior was opposite to what would be expected for traditional electrowetting. In one instance, hexadecane droplets in sodium dodecyl sulfate solutions with a voltage of -3.0 V, a rapid and repeating droplet elongation and detachment was observed. Additionally, the impact of the observed phenomena on electrowetting enhanced ultrasonication is presented to demonstrate the potential improvements in industrial ultrasonic cleaning processes. The observations lead to the possibility of employing simple electrowetting techniques in the removal of oil from metal surfaces in a manner that could greatly improve the environmental and economic performance of aqueous cleaning techniques.

4.
J Colloid Interface Sci ; 270(1): 229-41, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14693155

ABSTRACT

A model applying surfactant self-assembly theory and classical thermodynamics has been developed to aid in the prediction of solid surface cleaning by aqueous surfactant solutions. Information gained from a combination of surfactant self-assembly behavior and cleaning system parameters, such as oil species, surfactant type, temperature, alkalinity, and solid surface type has been shown to provide insight into surface cleaning. The model combines minimization of free energy, pertinent component distribution mechanisms, and surfactant self-assembly processes to provide a methodology for the predicting of oil droplet contact angles. Such predictive capabilities will allow for the development of beneficial environmental and economic changes to industrial and commercial surface cleaning and degreasing processes. Results from the model will be compared to experimental data to verify the capability of the theory to account for the effect of solutions parameters on oil droplet behavior. The model, while approximate in nature, has shown a remarkable quantitative predictive ability.

5.
Med Staff Couns ; 7(4): 9-15, 1993.
Article in English | MEDLINE | ID: mdl-10128462

ABSTRACT

Given existing market conditions and the prevailing political winds, it is likely that managed care participation will become increasingly important to physicians and physician groups in the years ahead. To avoid the potential pitfalls, physicians must be aware of the business and legal risks inherent in managed care and should carefully evaluate those risks prior to entering into any proposed managed care contract.


Subject(s)
Contract Services/standards , Managed Care Programs/legislation & jurisprudence , Practice Management, Medical/legislation & jurisprudence , Decision Making , Liability, Legal , Managed Care Programs/standards , Practice Management, Medical/economics , Reimbursement Mechanisms/legislation & jurisprudence , Risk , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...