Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PLoS One ; 9(4): e90421, 2014.
Article in English | MEDLINE | ID: mdl-24717647

ABSTRACT

BACKGROUND: Mother-to-child transmission (MTCT) is responsible for most pediatric HIV-1 infections worldwide. It can occur during pregnancy, labor, or breastfeeding. Numerous studies have used coalescent and molecular clock methods to understand the epidemic history of HIV-1, but the timing of vertical transmission has not been studied using these methods. Taking advantage of the constant accumulation of HIV genetic variation over time and using longitudinally sampled viral sequences, we used a coalescent approach to investigate the timing of MTCT. MATERIALS AND METHODS: Six-hundred and twenty-two clonal env sequences from the RNA and DNA viral population were longitudinally sampled from nine HIV-1 infected mother-and-child pairs [range: 277-1034 days]. For each transmission pair, timing of MTCT was determined using a coalescent-based model within a Bayesian statistical framework. Results were compared with available estimates of MTCT timing obtained with the classic biomedical approach based on serial HIV DNA detection by PCR assays. RESULTS: Four children were infected during pregnancy, whereas the remaining five children were infected at time of delivery. For eight out of nine pairs, results were consistent with the transmission periods assessed by standard PCR-based assay. The discordance in the remaining case was likely confused by co-infection, with simultaneous introduction of multiple maternal viral variants at the time of delivery. CONCLUSIONS: The study provided the opportunity to validate the Bayesian coalescent approach that determines the timing of MTCT of HIV-1. It illustrates the power of population genetics approaches to reliably estimate the timing of transmission events and deepens our knowledge about the dynamics of viral evolution in HIV-infected children, accounting for the complexity of multiple transmission events.


Subject(s)
Directed Molecular Evolution , HIV-1/genetics , HIV-1/physiology , Infectious Disease Transmission, Vertical , Models, Biological , Bayes Theorem , Child , Female , Humans , Markov Chains , Monte Carlo Method , Phylogeny , Pregnancy , Sequence Analysis, DNA , Time Factors
2.
BMC Evol Biol ; 14: 89, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24762206

ABSTRACT

BACKGROUND: Determining the presence or absence of gene flow between populations is the target of some statistical methods in population genetics. Until recently, these methods either avoided the use of recombining genes, or treated recombination as a nuisance parameter. However, genes with recombination contribute additional information for the detection of gene flow (i.e. through linkage disequilibrium). METHODS: We present three summary statistics based on the spatial arrangement of fixed differences, and shared and exclusive polymorphisms that are sensitive to the presence and direction of gene flow. Power and false positive rate for tests based on these statistics are studied by simulation. RESULTS: The application of these tests to populations from the Drosophila simulans species complex yielded results consistent with migration between D. simulans and its two endemic sister species D. mauritiana and D. sechellia, and between populations D. mauritiana on the islands of the Mauritius and Rodrigues. CONCLUSIONS: We demonstrate the sensitivity of the developed statistics to the presence and direction of gene flow, and characterize their power as a function of differentiation level and recombination rate. The properties of these statistics make them especially suitable for analyzing high-throughput sequencing data or for their integration within the approximate Bayesian computation framework.


Subject(s)
Drosophila/classification , Drosophila/genetics , Genetic Speciation , Animals , Bayes Theorem , Gene Flow , Genetics, Population , Indian Ocean Islands , Mauritius , Polymorphism, Genetic , Recombination, Genetic
3.
Virology ; 444(1-2): 90-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23890816

ABSTRACT

After HCV infection, the association between the humoral response and viral sequence evolution remains unclear. We investigated the mechanisms leading to early HCV clearance and spontaneous recovery in two patients. The early evolution of the HCV envelope glycoproteins, and the infectivity spectrum of variants were explored using retroviral pseudoparticles bearing HCV envelopes. Ability of the autologous neutralizing response to control these variants was analyzed. For the first case, the maximum neutralizing activity was for serum collected between two and three months post ALT peak, this activity was still detectable after 30 months. For the second case, autologous neutralizing activity against the variant isolated at the ALT peak was detected in every serum collected between 4 days and 13 months after. The neutralizing response was sustained beyond the time at which the virus was cleared. This raise interesting questions about the role of such antibodies in case of re-exposure.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Hepatitis C/immunology , Adult , Evolution, Molecular , Female , Humans , Male , Middle Aged , Molecular Sequence Data , RNA, Viral/genetics , Sequence Analysis, DNA , Time Factors , Viral Envelope Proteins/genetics
4.
PLoS One ; 7(5): e36642, 2012.
Article in English | MEDLINE | ID: mdl-22606277

ABSTRACT

BACKGROUND: Pearl millet landraces display an important variation in their cycle duration. This diversity contributes to the stability of crop production in the Sahel despite inter-annual rainfall fluctuation. Conservation of phenological diversity is important for the future of pearl millet improvement and sustainable use. Identification of genes contributing to flowering time variation is therefore relevant. In this study we focused on three flowering candidate genes, PgHd3a, PgDwarf8 and PgPHYC. We tested for signatures of past selective events within polymorphism patterns of these three genes that could have been associated with pearl millet domestication and/or landraces differentiation. In order to implement ad hoc neutrality tests, a plausible demographic history of pearl millet domestication was inferred through Approximate Bayesian Computation by using eight neutral STS loci. RESULTS: Domesticated pearl millet exhibited 84% of the nucleotide diversity level found in the wild population. No specific polymorphisms were found either in the wild or in the domestic populations. The bayesian approach and previous studies suggest that gene flow between wild relatives and domesticated pearl millets is a main factor explaining these results. Early and late landraces did not show significant genetic differentiation at both the neutral and the candidate loci. A positive selection was evidenced in PgHd3a and PgDwarf8 genes of domestic forms but not in the wild population. CONCLUSION: Our results strongly suggest that PgHd3a and PgDwarf8 were likely targeted by selection during domestication. However, a potential role of any of the three candidate genes in the phenological differentiation between early and late landraces was not supported by our data. Reasons why these results contrast with previous results that have shown a slight but significant association between PgPHYC polymorphisms and variation in flowering time in pearl millet are discussed.


Subject(s)
Pennisetum/genetics , Amino Acid Sequence , Bayes Theorem , DNA, Plant/genetics , Evolution, Molecular , Flowers/genetics , Flowers/growth & development , Genes, Plant , Genetic Variation , Microsatellite Repeats , Models, Genetic , Molecular Sequence Data , Pennisetum/growth & development , Phylogeny , Plant Proteins/genetics , Polymorphism, Genetic , Selection, Genetic , Sequence Homology, Amino Acid
5.
PLoS One ; 5(8): e11882, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20711443

ABSTRACT

To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.


Subject(s)
Dictyostelium/microbiology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Evolution, Molecular , Virulence Factors/genetics , Animals , Dictyostelium/growth & development , Ecology , Escherichia coli/metabolism , Escherichia coli/physiology , Genes, Bacterial/genetics , Genomic Islands/genetics , Humans , Mice , Mutation , Virulence Factors/metabolism
7.
PLoS Genet ; 6(2): e1000840, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20140238

ABSTRACT

Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in human also present adaptive changes in other primates therefore remains unknown. This question is important because a gene that has been positively selected independently in the human and in other primate lineages may be less likely to be involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we analysed heterozygous Single Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee, orangutan, and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when comparing genes positively selected during recent human evolution with genes subjected to positive selection in their coding sequence in other primate lineages and identified using a different test. These findings are further supported by comparing several published human genome scans for positive selection with our findings in non-human primate genomes. We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were selected uniquely during recent human evolution.


Subject(s)
Genome/genetics , Primates/genetics , Selection, Genetic , Animals , Forkhead Transcription Factors/genetics , Genetic Loci/genetics , Genetics, Population , Humans , Likelihood Functions , Models, Genetic , Open Reading Frames/genetics , Toll-Like Receptors/genetics
8.
Mol Ecol Resour ; 10(5): 760-72, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21565088

ABSTRACT

The analysis of ancient DNA in a population genetic or phylogeographical framework is an emerging field, as traditional analytical tools were largely developed for the purpose of analysing data sampled from a single time point. Markov chain Monte Carlo approaches have been successfully developed for the analysis of heterochronous sequence data from closed panmictic populations. However, attributing genetic differences between temporal samples to mutational events between time points requires the consideration of other factors that may also result in genetic differentiation. Geographical effects are an obvious factor for species exhibiting geographical structuring of genetic variation. The departure from a closed panmictic model require researchers to either exploit software developed for the analysis of isochronous data, take advantage of simulation approaches using algorithms developed for heterochronous data, or explore approximate Bayesian computation. Here, we review statistical approaches employed and available software for the joint analysis of ancient and modern DNA, and where appropriate we suggest how these may be further developed.

9.
PLoS One ; 4(5): e5541, 2009.
Article in English | MEDLINE | ID: mdl-19440242

ABSTRACT

BACKGROUND: New polymorphism datasets from heterochroneous data have arisen thanks to recent advances in experimental and microbial molecular evolution, and the sequencing of ancient DNA (aDNA). However, classical tools for population genetics analyses do not take into account heterochrony between subsets, despite potential bias on neutrality and population structure tests. Here, we characterize the extent of such possible biases using serial coalescent simulations. METHODOLOGY/PRINCIPAL FINDINGS: We first use a coalescent framework to generate datasets assuming no or different levels of heterochrony and contrast most classical population genetic statistics. We show that even weak levels of heterochrony ( approximately 10% of the average depth of a standard population tree) affect the distribution of polymorphism substantially, leading to overestimate the level of polymorphism theta, to star like trees, with an excess of rare mutations and a deficit of linkage disequilibrium, which are the hallmark of e.g. population expansion (possibly after a drastic bottleneck). Substantial departures of the tests are detected in the opposite direction for more heterochroneous and equilibrated datasets, with balanced trees mimicking in particular population contraction, balancing selection, and population differentiation. We therefore introduce simple corrections to classical estimators of polymorphism and of the genetic distance between populations, in order to remove heterochrony-driven bias. Finally, we show that these effects do occur on real aDNA datasets, taking advantage of the currently available sequence data for Cave Bears (Ursus spelaeus), for which large mtDNA haplotypes have been reported over a substantial time period (22-130 thousand years ago (KYA)). CONCLUSIONS/SIGNIFICANCE: Considering serial sampling changed the conclusion of several tests, indicating that neglecting heterochrony could provide significant support for false past history of populations and inappropriate conservation decisions. We therefore argue for systematically considering heterochroneous models when analyzing heterochroneous samples covering a large time scale.


Subject(s)
Databases, Genetic , Genetics, Population/methods , Algorithms , Animals , Computer Simulation , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetic Variation , Phylogeny , Polymorphism, Genetic/genetics , Ursidae/genetics
10.
Genetics ; 179(4): 2195-211, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18689900

ABSTRACT

Microsatellite markers are extensively used to evaluate genetic diversity in natural or experimental evolving populations. Their high degree of polymorphism reflects their high mutation rates. Estimates of the mutation rates are therefore necessary when characterizing diversity in populations. As a complement to the classical experimental designs, we propose to use experimental populations, where the initial state is entirely known and some intermediate states have been thoroughly surveyed, thus providing a short timescale estimation together with a large number of cumulated meioses. In this article, we derived four original gene genealogy-based methods to assess mutation rates with limited bias due to relevant model assumptions incorporating the initial state, the number of new alleles, and the genetic effective population size. We studied the evolution of genetic diversity at 21 microsatellite markers, after 15 generations in an experimental wheat population. Compared to the parents, 23 new alleles were found in generation 15 at 9 of the 21 loci studied. We provide evidence that they arose by mutation. Corresponding estimates of the mutation rates ranged from 0 to 4.97 x 10(-3) per generation (i.e., year). Sequences of several alleles revealed that length polymorphism was only due to variation in the core of the microsatellite. Among different microsatellite characteristics, both the motif repeat number and an independent estimation of the Nei diversity were correlated with the novel diversity. Despite a reduced genetic effective size, global diversity at microsatellite markers increased in this population, suggesting that microsatellite diversity should be used with caution as an indicator in biodiversity conservation issues.


Subject(s)
Mutation , Triticum/genetics , Alleles , DNA, Plant/metabolism , Genealogy and Heraldry , Genetics, Population , Microsatellite Repeats , Models, Theoretical , Population Density
11.
Am Nat ; 170(1): 143-54, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17853998

ABSTRACT

Though predation, productivity (nutrient richness), spatial heterogeneity, and disturbance regimes are known to influence species diversity, interactions between these factors remain largely unknown. Predation has been shown to interact with productivity and with spatial heterogeneity, but few experimental studies have focused on how predation and disturbance interact to influence prey diversity. We used theory and experiments to investigate how these factors influence diversification of Pseudomonas fluorescens by manipulating both predation (presence or absence of Bdellovibrio bacteriovorus) and disturbance (frequency and intensity of disturbance). Our results show that in a homogeneous environment, predation is essential to promote prey species diversity. However, in most but not all treatments, elevated diversity was transitory, implying that the effect of predation on diversity was strongly influenced by disturbance. Both our experimental and theoretical results suggest that disturbance interacts with predation by modifying the interplay of resource and apparent competition among prey.


Subject(s)
Bdellovibrio/physiology , Biodiversity , Pseudomonas fluorescens/virology , Models, Biological , Mutation , Pseudomonas fluorescens/classification , Pseudomonas fluorescens/genetics , Species Specificity
12.
Genetics ; 165(3): 1619-22, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14668409

ABSTRACT

Several neutrality tests use outgroups to infer the ancestral and derived states for polymorphism data. However, homoplasy can result in the incorrect inference of the derived variant. We show that empirically derived rates of misorientation strongly influence Fay and Wu's H-test, especially when the sample size is large.


Subject(s)
Polymorphism, Genetic , Mutation
13.
Genetics ; 163(2): 599-609, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12618399

ABSTRACT

Assessing the rate of evolution depends on our ability to detect selection at several genes simultaneously. We summarize DNA sequence variation data in three new and six previously published data sets from the left arm of the second chromosome of Drosophila melanogaster in a population from West Africa, the presumed area of origin of this species. Four loci [Acp26Aa, Fbp2, Vha68-1, and Su(H)] were previously found to deviate from a neutral mutation-drift equilibrium as a consequence of one or several selective sweeps. Polymorphism data from five loci from intervening regions (dpp, Acp26Ab, Acp29AB, GH10711, and Sos) did not show the characteristic deviation from neutrality caused by local selective sweeps. This genomic region is polymorphic for the In(2L)t inversion. Four loci located near inversion breakpoints [dpp, sos, GH10711, and Su(H)] showed significant structuring between the two arrangements or significant deviation from neutrality in the inverted class, probably as a result of a recent shift in inversion frequency. Overall, these patterns of variation suggest that the four selective events were independent. Six loci were observed with no a priori knowledge of selection, and independent selective sweeps were detected in three of them. This suggests that a large part of the D. melanogaster genome has experienced the effect of positive selection in its ancestral African range.


Subject(s)
Drosophila melanogaster/genetics , Selection, Genetic , Africa, Western , Animals , Base Sequence , Chromosome Inversion , Molecular Sequence Data , Phylogeny , Polymorphism, Genetic , Sequence Analysis, DNA
14.
J Mol Evol ; 57 Suppl 1: S190-200, 2003.
Article in English | MEDLINE | ID: mdl-15008416

ABSTRACT

The power of several neutrality tests to reject a simple bottleneck model is examined in a coalescent framework. Several tests are considered including some relying on the frequency spectrum of mutations and some reflecting the linkage disequilibrium structure of the data. We evaluate the effect of the age and of the strength of the bottleneck, and their interaction. We contrast two qualitatively different bottleneck effects depending on their strength. In genealogical terms, during severe bottlenecks, all lineages coalesce leading to a star-like gene genealogy of the sample. Some time after the bottleneck, once new mutations have arisen, they tend to show an excess of rare variants and a slight excess of haplotypes. On the contrary, more moderate bottlenecks allow several lineages to survive the demographic crash, leading to a balanced genealogy with long internal branches. Soon after the event, data tend to show an excess of intermediate frequency variants and a deficit of haplotypes. We show that for moderate sequencing efforts, severe bottlenecks can be detected only after an intermediate time period has allowed for mutations to occur, preferably by frequency spectrum statistics. Moderate bottlenecks can be more easily detected for more recent events, especially using haplotype statistics. Finally, for a single locus, the bottleneck results closely approximate those of a simple hitchhiking model. The main difference concerns the frequency distribution of mutations and haplotypes after moderate perturbations. Hitchhiking increases the number of rare ancestral mutations and leads to a more predominant major haplotype class. Thus, despite a number of common features between the two processes, hitchhiking cannot be strictly modeled by bottlenecks.


Subject(s)
Genetics, Population , Models, Genetic , Algorithms , Animals , Drosophila/genetics , Genetic Variation , Haplotypes/genetics , Mutation
15.
Theor Popul Biol ; 61(1): 31-48, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11895381

ABSTRACT

We introduce a general recursion for the probability of identity in state of two individuals sampled from a population subject to mutation, migration, and random drift in a two-dimensional continuum. The recursion allows for the interactions induced by density-dependent regulation of the population, which are inevitable in a continuous population. We give explicit series expansions for large neighbourhood size and for low mutation rates respectively and investigate the accuracy of the classical Malécot formula for these general models. When neighbourhood size is small, this formula does not give the identity even over large scales. However, for large neighbourhood size, it is an accurate approximation which summarises the local population structure in terms of three quantities: the effective dispersal rate, sigma(e); the effective population density, rho(e); and a local scale, kappa, at which local interactions become significant. The results are illustrated by simulations.


Subject(s)
Animal Migration , Biological Evolution , Models, Biological , Alleles , Animals , Data Interpretation, Statistical , Mutation , Population Density , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...