Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Chem Biol ; 68: 102144, 2022 06.
Article in English | MEDLINE | ID: mdl-35429694

ABSTRACT

Inflammation is a common, fast, and innate response of the immune system to sterile or infectious tissue damage or autoimmune triggers. It aims at minimizing tissue destruction and maintaining organ function, hence is vital to life. Therefore, the immune system comprises the concerted action of a variety of different immune cells with specific tasks in the initiation, maintenance, and termination of inflammation. Visualizing their localization, trafficking, and interaction is of utmost importance to unravel the dynamics of inflammation in the living organism and requires tools for cell-specific labeling and imaging. Many concepts for covalent cell-type or protein-specific labeling have been developed, but only few have been implemented for labeling immune cells. Here, we review approaches that were already successful for fluorescent reporters and radioactive nuclides. We also provide a glimpse on emerging technologies that bear potential for immune cell labeling and imaging in vivo.


Subject(s)
Inflammation , Proteins , Diagnostic Imaging , Humans
2.
Cell Mol Life Sci ; 79(4): 197, 2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35305155

ABSTRACT

Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype. The quirky mouse model showed irregular action potential firing of their cerebellar nuclei (CN) neurons as well as rhythmic firing during the wave of their SWDs. The purky model also showed irregular CN firing, in addition to a reduced firing rate and rhythmicity during the spike of the SWDs. In both models, the incidence of SWDs could be decreased by increasing CN activity via activation of the Gq-coupled designer receptor exclusively activated by designer drugs (DREADDs) or via that of the Gq-coupled metabotropic glutamate receptor 1. In contrast, the incidence of SWDs was increased by decreasing CN activity via activation of the inhibitory Gi/o-coupled DREADD. Finally, disrupting CN rhythmic firing with a closed-loop channelrhodopsin-2 stimulation protocol confirmed that ongoing SWDs can be ceased by activating CN neurons. Together, our data highlight that P/Q-type calcium channels in cerebellar granule cells and Purkinje cells can be relevant for epileptogenesis, that Gq-coupled activation of CN neurons can exert anti-epileptic effects and that precisely timed activation of the CN can be used to stop ongoing SWDs.


Subject(s)
Cerebellar Nuclei , Epilepsy, Absence , Action Potentials/physiology , Animals , Epilepsy, Absence/genetics , Mice , Seizures/genetics , Signal Transduction
3.
Chem Commun (Camb) ; 57(77): 9850-9853, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34490435

ABSTRACT

Bioorthogonal covalent labeling with self-labeling enzymes like SNAP-tag bears a high potential for specific targeting of cells for imaging in vitro and also in vivo. To this end, fluorescent SNAP substrates have been established and used in microscopy and fluorescence imaging while radioactive substrates for the highly sensitive and whole-body positron emission tomography (PET) have been lacking. Here, we show for the first time successful and high-contrast PET imaging of subcutaneous SNAP-tag expressing tumor xenografts by bioorthogonal covalent targeting with a novel 18F-based radioligand in vivo.


Subject(s)
Fluorescent Dyes/chemistry , Positron-Emission Tomography , Animals , Female , Fluorine Radioisotopes , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...