Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Mol Cancer Ther ; 18(2): 346-355, 2019 02.
Article in English | MEDLINE | ID: mdl-30425131

ABSTRACT

PIK3CA mutations are common in clinical molecular profiling, yet an effective means to target these cancers has yet to be developed. MTORC1 inhibitors are often used off-label for patients with PIK3CA mutant cancers with only limited data to support this approach. Here we describe a cohort of patients treated with cancers possessing mutations activating the PI3K signaling cascade with minimal benefit to treatment with the MTORC1 inhibitor everolimus. Previously, we demonstrated that dual PI3K/mTOR inhibition could decrease proliferation, induce differentiation, and result in a treatment response in APC and PIK3CA mutant colorectal cancer. However, reactivation of AKT was identified, indicating that the majority of the benefit may be secondary to MTORC1/2 inhibition. TAK-228, an MTORC1/2 inhibitor, was compared with dual PI3K/mTOR inhibition using BEZ235 in murine colorectal cancer spheroids. A reduction in spheroid size was observed with TAK-228 and BEZ235 (-13% and -14%, respectively) compared with an increase of >200% in control (P < 0.001). These spheroids were resistant to MTORC1 inhibition. In transgenic mice possessing Pik3ca and Apc mutations, BEZ235 and TAK-228 resulted in a median reduction in colon tumor size of 19% and 20%, respectively, with control tumors having a median increase of 18% (P = 0.02 and 0.004, respectively). This response correlated with a decrease in the phosphorylation of 4EBP1 and RPS6. MTORC1/2 inhibition is sufficient to overcome resistance to everolimus and induce a treatment response in PIK3CA mutant colorectal cancers and deserves investigation in clinical trials and in future combination regimens.


Subject(s)
Benzoxazoles/administration & dosage , Class I Phosphatidylinositol 3-Kinases/genetics , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Mutation , Pyrimidines/administration & dosage , Adenomatous Polyposis Coli Protein/genetics , Animals , Benzoxazoles/pharmacology , Cell Line, Tumor , Cohort Studies , Colorectal Neoplasms/genetics , Female , Humans , Imidazoles/administration & dosage , Imidazoles/pharmacology , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mice , Mice, Transgenic , Pyrimidines/pharmacology , Quinolines/administration & dosage , Quinolines/pharmacology , Signal Transduction , Xenograft Model Antitumor Assays
2.
J Surg Res ; 213: 16-24, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28601309

ABSTRACT

BACKGROUND: Curcumin has proven to be a potent antitumor agent in both preclinical and clinical models of colorectal cancer (CRC). It has also been identified as a ligand of the transcription factor known as the aryl hydrocarbon receptor (AHR). Our laboratory has identified the AHR as a mechanism which contributes to both tumorigenesis in a mouse model of inflammatory CRC as well an apoptotic target in vitro. Curcumin's role as an AHR ligand may modulate its effects to induce colon cancer cell death, and this role may be enhanced via structural modification of the curcumin backbone. We sought to determine if the two piperidone analogs of curcumin, RL66 and RL118, exhibit more robust antitumor actions than their parent compound in the context of colorectal cancer in vitro. Moreover, to ascertain the ability of curcumin, RL66 and RL118 to activate the AHR and evaluate if this activation has any effect on CRC cell death. MATERIALS AND METHODS: DLD1, HCT116, LS513, and RKO colon cell lines were propagated in vitro. Natural curcumin was obtained commercially, whereas RL66 and RL118 were synthesized and characterized de novo. Multiwell fluorescent/luminescent signal detection was used to simultaneously ascertain cell viability, cell cytonecrosis, and relative amounts of apoptotic activity. AHR activity was measured with a dual luciferase reporter gene system. Stable expression of small interfering RNA interference was established in the HCT116 cell lines to create AHR "knock down" cell lines. RESULTS: Both RL66 and RL118 proved to be more potent antitumor agents than their parent compound curcumin in all cell lines tested. The majority of this cell death was due to induction of apoptosis, which occurred earlier and to a greater degree following RL66 and RL118 treatment as opposed to curcumin. Also, RL66 and RL118 were found to be activators of AHR, and a portion of their ability to cause cell death was dependent on this induction. Curcumin was found unable to activate the AHR, and levels of AHR messenger RNA did not change their effects on cell death. CONCLUSIONS: Piperidone analogs of curcumin exhibited enhanced antitumor effects in vitro as opposed to their parent compound. Even more, this enhanced cell death profile may be partially attributed to the ability of these compounds to activate the AHR. Further study of synthetic curcumin analogs as chemopreventives and chemoadjuncts in CRC is warranted. Also, more generally, the AHR may represent a potential putative target for novel anticancer agents for CRC.


Subject(s)
Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Curcumin/pharmacology , Piperidones/pharmacology , Pyridines/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/physiology , Cell Survival/drug effects , Cell Survival/physiology , Colorectal Neoplasms/metabolism , Curcumin/metabolism , Curcumin/therapeutic use , HCT116 Cells , Humans , Piperidones/metabolism , Piperidones/therapeutic use , Pyridines/metabolism , Pyridines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...