Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 24(6): e34295, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35502887

ABSTRACT

BACKGROUND: Machine learning algorithms are currently used in a wide array of clinical domains to produce models that can predict clinical risk events. Most models are developed and evaluated with retrospective data, very few are evaluated in a clinical workflow, and even fewer report performances in different hospitals. In this study, we provide detailed evaluations of clinical risk prediction models in live clinical workflows for three different use cases in three different hospitals. OBJECTIVE: The main objective of this study was to evaluate clinical risk prediction models in live clinical workflows and compare their performance in these setting with their performance when using retrospective data. We also aimed at generalizing the results by applying our investigation to three different use cases in three different hospitals. METHODS: We trained clinical risk prediction models for three use cases (ie, delirium, sepsis, and acute kidney injury) in three different hospitals with retrospective data. We used machine learning and, specifically, deep learning to train models that were based on the Transformer model. The models were trained using a calibration tool that is common for all hospitals and use cases. The models had a common design but were calibrated using each hospital's specific data. The models were deployed in these three hospitals and used in daily clinical practice. The predictions made by these models were logged and correlated with the diagnosis at discharge. We compared their performance with evaluations on retrospective data and conducted cross-hospital evaluations. RESULTS: The performance of the prediction models with data from live clinical workflows was similar to the performance with retrospective data. The average value of the area under the receiver operating characteristic curve (AUROC) decreased slightly by 0.6 percentage points (from 94.8% to 94.2% at discharge). The cross-hospital evaluations exhibited severely reduced performance: the average AUROC decreased by 8 percentage points (from 94.2% to 86.3% at discharge), which indicates the importance of model calibration with data from the deployment hospital. CONCLUSIONS: Calibrating the prediction model with data from different deployment hospitals led to good performance in live settings. The performance degradation in the cross-hospital evaluation identified limitations in developing a generic model for different hospitals. Designing a generic process for model development to generate specialized prediction models for each hospital guarantees model performance in different hospitals.


Subject(s)
Electronic Health Records , Machine Learning , Hospitals , Humans , ROC Curve , Retrospective Studies
2.
J Biomed Inform ; 118: 103783, 2021 06.
Article in English | MEDLINE | ID: mdl-33887456

ABSTRACT

OBJECTIVE: Machine learning (ML) algorithms are now widely used in predicting acute events for clinical applications. While most of such prediction applications are developed to predict the risk of a particular acute event at one hospital, few efforts have been made in extending the developed solutions to other events or to different hospitals. We provide a scalable solution to extend the process of clinical risk prediction model development of multiple diseases and their deployment in different Electronic Health Records (EHR) systems. MATERIALS AND METHODS: We defined a generic process for clinical risk prediction model development. A calibration tool has been created to automate the model generation process. We applied the model calibration process at four hospitals, and generated risk prediction models for delirium, sepsis and acute kidney injury (AKI) respectively at each of these hospitals. RESULTS: The delirium risk prediction models have on average an area under the receiver-operating characteristic curve (AUROC) of 0.82 at admission and 0.95 at discharge on the test datasets of the four hospitals. The sepsis models have on average an AUROC of 0.88 and 0.95, and the AKI models have on average an AUROC of 0.85 and 0.92, at the day of admission and discharge respectively. DISCUSSION: The scalability discussed in this paper is based on building common data representations (syntactic interoperability) between EHRs stored in different hospitals. Semantic interoperability, a more challenging requirement that different EHRs share the same meaning of data, e.g. a same lab coding system, is not mandated with our approach. CONCLUSIONS: Our study describes a method to develop and deploy clinical risk prediction models in a scalable way. We demonstrate its feasibility by developing risk prediction models for three diseases across four hospitals.


Subject(s)
Electronic Health Records , Machine Learning , Hospitalization , Hospitals , Humans , ROC Curve
3.
Biomed Res Int ; 2016: 6741418, 2016.
Article in English | MEDLINE | ID: mdl-27123451

ABSTRACT

Depending mostly on voluntarily sent spontaneous reports, pharmacovigilance studies are hampered by low quantity and quality of patient data. Our objective is to improve postmarket safety studies by enabling safety analysts to seamlessly access a wide range of EHR sources for collecting deidentified medical data sets of selected patient populations and tracing the reported incidents back to original EHRs. We have developed an ontological framework where EHR sources and target clinical research systems can continue using their own local data models, interfaces, and terminology systems, while structural interoperability and Semantic Interoperability are handled through rule-based reasoning on formal representations of different models and terminology systems maintained in the SALUS Semantic Resource Set. SALUS Common Information Model at the core of this set acts as the common mediator. We demonstrate the capabilities of our framework through one of the SALUS safety analysis tools, namely, the Case Series Characterization Tool, which have been deployed on top of regional EHR Data Warehouse of the Lombardy Region containing about 1 billion records from 16 million patients and validated by several pharmacovigilance researchers with real-life cases. The results confirm significant improvements in signal detection and evaluation compared to traditional methods with the missing background information.


Subject(s)
Electronic Health Records , Patient Safety/statistics & numerical data , Pharmacovigilance , Delivery of Health Care , Humans
4.
J Biomed Inform ; 58: 247-259, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26515501

ABSTRACT

There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data.


Subject(s)
Biomedical Research , Electronic Health Records , Semantics
5.
Comput Methods Programs Biomed ; 108(2): 724-35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22640816

ABSTRACT

Although the health care sector has already been subjected to a major computerization effort, this effort is often limited to the implementation of standalone systems which do not communicate with each other. Interoperability problems limit health care applications from achieving their full potential. In this paper, we propose the use of Semantic Web technologies to solve interoperability problems between data providers. Through the development of unifying health care ontologies, data from multiple health care providers can be aggregated, which can then be used as input for a decision support system. This way, more data is taken into account than a single health care provider possesses in his local setting. The feasibility of our approach is demonstrated by the creation of an end-to-end proof of concept, focusing on Belgian health care providers and medicinal decision support.


Subject(s)
Decision Support Techniques , Belgium , Feasibility Studies , Internet
6.
Stud Health Technol Inform ; 160(Pt 2): 1060-4, 2010.
Article in English | MEDLINE | ID: mdl-20841846

ABSTRACT

Antibiotics resistance development poses a significant problem in today's hospital care. Massive amounts of clinical data are being collected and stored in proprietary and unconnected systems in heterogeneous format. The DebugIT EU project promises to make this data geographically and semantically interoperable for case-based knowledge analysis approaches aiming at the discovery of patterns that help to align antibiotics treatment schemes. The semantic glue for this endeavor is DCO, an application ontology that enables data miners to query distributed clinical information systems in a semantically rich and content driven manner. DCO will hence serve as the core component of the interoperability platform for the DebugIT project. Here we present DCO and an approach thet uses the semantic web query language SPARQL to bind and ontologically query hospital database content using DCO and information model mediators. We provide a query example that indicates that ontological querying over heterogeneous information models is feasible via SPARQL construct- and resource mapping queries.


Subject(s)
Drug Resistance, Microbial , Semantics , Databases, Factual , Information Storage and Retrieval , Internet , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...