Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37763595

ABSTRACT

The growing awareness of the environment and sustainable development has prompted the search for solutions involving the development of bio-based composite materials for insulating applications, offering an alternative to traditional synthetic materials such as glass- and carbon-reinforced composites. In this study, we investigate the thermal and microstructural properties of new biocomposite insulating materials derived from flaxseed-gum-filled epoxy, with and without the inclusion of reinforced flax fibers. A theoretical approach is proposed to estimate the thermal conductivity, while the composite's microstructure is characterized using X-ray Computed Tomography and image analysis. The local thermal conductivity of the flax fibers and the flaxseed gum matrix is identified by using effective thermal conductivity measurements and analytical models. This study provides valuable insight into the thermal behavior of these biocomposites with varying compositions of flaxseed gum and epoxy resin. The results obtained could not only contribute to a better understanding the thermal properties of these materials but are also of significant interest for advanced numerical modeling applications.

2.
Rev Sci Instrum ; 86(9): 094901, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26429468

ABSTRACT

A new and accurate method for the thermal characterization of thermoelectric liquids is proposed. The experiment is based on a self-generated voltage due to the Seebeck effect. This voltage is provided by the sample when one of its two faces is thermally excited using a modulated laser. The sample used is tetradodecylammonium nitrate salt/1-octanol mixture, with high Seebeck coefficient. The thermal properties of the used sample (thermal diffusivity, effusivity, and conductivity) are found and compared to those obtained by other photothermal techniques. In addition to this, a study of the electrolyte thermal parameters with the variation of tetradodecylammonium nitrate concentration was also carried out. This new method is promising due to its accuracy and its simplicity.

3.
Nanotechnology ; 25(47): 475705, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25379772

ABSTRACT

Polyanilines (PANI)/reduced graphene oxide (RGO) nanocomposites are chemically synthesized. Their structure and morphology are characterized by scanning and transmission electron microscopies, x-ray diffraction and Raman spectroscopy. In addition, the nanocomposites' electrical, thermal and thermoelectric (TE) transport characteristics are investigated as a function of RGO content. The power factor and figure of merit (ZT) of PANI/RGO hybrids are deduced from measurements of the electrical conductivity (σ), Seebeck coefficient (α) and thermal conductivity (κ). Experimental results reveal that the properties of PANI/RGO composites are inherently dependent on the volume fraction of RGO. It is observed that electrical percolation follows a 2D conduction process which takes place for samples having 0.099 vol% RGO content. Unlike electrical conductivity, the thermal conductivity of PANI/RGO increases only slightly with the RGO fraction and is successfully fitted using a modified MG-EMA model which provides an interfacial (PANI/RGO nanoplatelets) resistance (Rk) of 4.9 × 10(-10) m(2) K W(-1). This low Rk value is attributed to good interactions between the planar geometry of RGO platelets and PANI aromatic rings through π-π stackings as evidenced by Raman spectroscopy and x-ray studies. Compared to that of pure PANI, the TE performance of PANI/RGO composites exhibits a ZT enhancement of two orders of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...