Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 23(Pt 3): 679-84, 2016 05.
Article in English | MEDLINE | ID: mdl-27140146

ABSTRACT

Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

2.
J Synchrotron Radiat ; 23(2): 404-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26917126

ABSTRACT

The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allows continuous acquisition of data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex nano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operate continuously in the microsecond time frame, while at the same time probing longer timescales.

SELECTION OF CITATIONS
SEARCH DETAIL
...