Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 131: 108975, 2020 05.
Article in English | MEDLINE | ID: mdl-32247445

ABSTRACT

Papayas undergo fast postharvest changes triggered by the plant hormone ethylene. Some important pathways have been analyzed in limited studies (transcriptomics and targeted metabolomics); however, broad use of proteomics or untargeted metabolomics have not yet been used in papayas. In this study, two groups of green papayas (150 days after anthesis-physiological maturity for papayas) were treated with ethylene at different times (6 and 12 h) and their metabolic changes in fruit pulp were evaluated with untargeted metabolomics (general metabolites and volatile compounds) and proteomics. Polar metabolites exhibited distinct patterns, especially with regard to some amino and fatty acids during stimulated ripening. In particular, glutamate increased through a possible gamma aminobutyric acid (GABA) shunt and/or proteases activity. Moreover, the stimulated ripening altered the volatile compounds and the protein profiles. The results suggest that changes in membrane breakdown and the resulting oxidative processes could be responsible for volatile compound production, altering some sensorial qualities of papayas, such as pulp softening and the specific papaya linalool volatile compound increment. Thus, GABA levels could also be a strong biological marker for papaya development and ripening stages. This study applied two "omic" techniques that provided insight into how the plant hormone ethylene could influence papaya postharvest quality.


Subject(s)
Carica/chemistry , Ethylenes/pharmacology , Metabolome/drug effects , Proteome/drug effects , Volatile Organic Compounds/metabolism , Fruit/drug effects , Fruit/metabolism , Gene Expression Regulation, Plant/drug effects
2.
J Agric Food Chem ; 57(22): 10765-71, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19860446

ABSTRACT

Levels of sucrose and total fructooligosaccharides (FOS) were quantified in different phases of banana 'Prata' ripening during storage at ambient (approximately 19 degrees C) and low (approximately 10 degrees C) temperature. Total FOS levels were detected in the first days after harvest, whereas 1-kestose remained undetectable until the sucrose levels reached approximately 200 mg/g (dry weight) in both groups. Sucrose levels increased slowly but constantly at low temperature, but they elevated rapidly when the temperature was raised to 19 degrees C. Total FOS and sucrose levels were higher in bananas stored at low temperature than in the control group. In both samples, total FOS levels were higher than those of 1-kestose. The carbohydrate profiles obtained by HPLC and TLC suggest the presence of neokestose, 6-kestose, and bifurcose. The enzymes putatively involved in banana fructosyltransferase activity were also evaluated. Results obtained indicate that the banana enzyme responsible for the synthesis of FOS by transfructosylation is an invertase rather than a sucrose-sucrosyl transferase-like enzyme.


Subject(s)
Fruit/metabolism , Musa/metabolism , Oligosaccharides/biosynthesis , Sucrose/metabolism , beta-Fructofuranosidase/metabolism , Chromatography, High Pressure Liquid , Food Preservation/methods , Fruit/chemistry , Fruit/growth & development , Oligosaccharides/analysis , Sucrose/analysis , Temperature
3.
J Agric Food Chem ; 56(9): 3305-10, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18393435

ABSTRACT

Banana has been currently indicated as a good source of fructooligosaccharides (FOS), which are considered to be functional components of foods. However, significant differences in their amounts in bananas have been observed in the literature. This work aims to identify and quantify FOS during ripening in different banana cultivars belonging to the most common genomic groups cultivated in Brazil. Considering that these differences can be due to cultivar, stage of ripening, and the methodologies used for FOS analyses, sugar contents were analyzed by high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and gas chromatography-mass spectrometry (GC-MS). An initial screening of eight cultivars (Ouro, Nanicão, Prata, Maçã, Mysore, Pacovan, Terra, and Figo) in a full-ripe stage showed that 1-kestose, the first member of the FOS series (amounts between 297 and 1600 microg/g of DM), was accumulated in all of them. Nystose, the second member, was detected only in Prata cultivar. Five of the cultivars were analyzed during ripening, and a strong correlation could be established with a specific sucrose level ( approximately 200 mg/g of DM), which seems to trigger the synthesis of 1-kestose (the low amounts of FOS, below the functional recommended dose, indicates that banana cannot be considered a good source of FOS).


Subject(s)
Fruit/chemistry , Musa/chemistry , Oligosaccharides/analysis , Brazil , Chromatography, Ion Exchange , Fruit/growth & development , Gas Chromatography-Mass Spectrometry , Species Specificity , Sucrose/analysis , Trisaccharides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...