Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Affect Behav Neurosci ; 23(3): 691-704, 2023 06.
Article in English | MEDLINE | ID: mdl-37058212

ABSTRACT

Signals related to uncertainty are frequently observed in regions of the cognitive control network, including anterior cingulate/medial prefrontal cortex (ACC/mPFC), dorsolateral prefrontal cortex (dlPFC), and anterior insular cortex. Uncertainty generally refers to conditions in which decision variables may assume multiple possible values and can arise at multiple points in the perception-action cycle, including sensory input, inferred states of the environment, and the consequences of actions. These sources of uncertainty are frequently correlated: noisy input can lead to unreliable estimates of the state of the environment, with consequential influences on action selection. Given this correlation amongst various sources of uncertainty, dissociating the neural structures underlying their estimation presents an ongoing issue: a region associated with uncertainty related to outcomes may estimate outcome uncertainty itself, or it may reflect a cascade effect of state uncertainty on outcome estimates. In this study, we derive signals of state and outcome uncertainty from mathematical models of risk and observe regions in the cognitive control network whose activity is best explained by signals related to state uncertainty (anterior insula), outcome uncertainty (dlPFC), as well as regions that appear to integrate the two (ACC/mPFC).


Subject(s)
Magnetic Resonance Imaging , Prefrontal Cortex , Humans , Uncertainty , Gyrus Cinguli , Cognition
2.
Nat Hum Behav ; 4(4): 412-422, 2020 04.
Article in English | MEDLINE | ID: mdl-31932692

ABSTRACT

Activity in the dorsal anterior cingulate cortex (dACC) is observed across a variety of contexts, and its function remains intensely debated in the field of cognitive neuroscience. While traditional views emphasize its role in inhibitory control (suppressing prepotent, incorrect actions), recent proposals suggest a more active role in motivated control (invigorating actions to obtain rewards). Lagging behind empirical findings, formal models of dACC function primarily focus on inhibitory control, highlighting surprise, choice difficulty and value of control as key computations. Although successful in explaining dACC involvement in inhibitory control, it remains unclear whether these mechanisms generalize to motivated control. In this study, we derive predictions from three prominent accounts of dACC and test these with functional magnetic resonance imaging during value-based decision-making under time pressure. We find that the single mechanism of surprise best accounts for activity in dACC during a task requiring response invigoration, suggesting surprise signalling as a shared driver of inhibitory and motivated control.


Subject(s)
Decision Making/physiology , Gyrus Cinguli/physiology , Adult , Anticipation, Psychological/physiology , Female , Functional Neuroimaging , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Reaction Time , Reward , Young Adult
3.
Cogn Affect Behav Neurosci ; 19(3): 619-636, 2019 06.
Article in English | MEDLINE | ID: mdl-30607834

ABSTRACT

Efficient integration of environmental information is critical in goal-directed behavior. Motivational information regarding potential rewards and costs (such as required effort) affects performance and decisions whether to engage in a task. While it is generally acknowledged that costs and benefits are integrated to determine the level of effort to be exerted, how this integration occurs remains an open question. Computational models of high-level cognition postulate serial processing of task-relevant features and demonstrate that prioritizing the processing of one feature over the other can affect performance. We investigated the hypothesis that motivationally relevant task features also may be processed serially, that people may prioritize either benefit or cost information, and that artificially controlling prioritization may be beneficial for performance (by improving task-accuracy) and decision-making (by boosting the willingness to engage in effortful trials). We manipulated prioritization by altering order of presentation of effort and reward cues in two experiments involving preparation for effortful performance and effort-based decision-making. We simulated the tasks with a recent model of prefrontal cortex (Alexander & Brown in Neural Computation, 27(11), 2354-2410, 2015). Human behavior was in line with model predictions: prioritizing reward vs. effort differentially affected performance vs. decision. Prioritizing reward was beneficial for performance, showing striking increase in accuracy, especially when a large reward was offered for a difficult task. Counterintuitively (yet predicted by the model), prioritizing reward resulted in a blunted reward effect on decisions. Conversely, prioritizing effort increased reward impact on decision to engage. These results highlight the importance of controlling prioritization of motivational cues in neuroimaging studies.


Subject(s)
Decision Making , Models, Psychological , Motivation , Psychomotor Performance , Reward , Cues , Female , Humans , Male , Photic Stimulation , Young Adult
4.
Neuroinformatics ; 16(2): 253-268, 2018 04.
Article in English | MEDLINE | ID: mdl-29564729

ABSTRACT

Multi-voxel pattern analysis often necessitates feature selection due to the high dimensional nature of neuroimaging data. In this context, feature selection techniques serve the dual purpose of potentially increasing classification accuracy and revealing sets of features that best discriminate between classes. However, feature selection techniques in current, widespread use in the literature suffer from a number of deficits, including the need for extended computational time, lack of consistency in selecting features relevant to classification, and only marginal increases in classifier accuracy. In this paper we present a novel method for feature selection based on a single-layer neural network which incorporates cross-validation during feature selection and stability selection through iterative subsampling. Comparing our approach to popular alternative feature selection methods, we find increased classifier accuracy, reduced computational cost and greater consistency with which relevant features are selected. Furthermore, we demonstrate that importance mapping, a technique used to identify voxels relevant to classification, can lead to the selection of irrelevant voxels due to shared activation patterns across categories. Our method, owing to its relatively simple architecture, flexibility and speed, can provide a viable alternative for researchers to identify sets of features that best discriminate classes.


Subject(s)
Databases, Factual/standards , Neural Networks, Computer , Support Vector Machine/standards , Humans
5.
J Cogn Neurosci ; 29(10): 1633-1645, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28654358

ABSTRACT

Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC-DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.


Subject(s)
Computer Simulation , Decision Making/physiology , Models, Neurological , Motivation/physiology , Prefrontal Cortex/physiology , Prefrontal Cortex/physiopathology , Humans , Neural Pathways/physiology , Neural Pathways/physiopathology
6.
J Cogn Neurosci ; 29(10): 1674-1683, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28430041

ABSTRACT

pFC is generally regarded as a region critical for abstract reasoning and high-level cognitive behaviors. As such, it has become the focus of intense research involving a wide variety of subdisciplines of neuroscience and employing a diverse range of methods. However, even as the amount of data on pFC has increased exponentially, it appears that progress toward understanding the general function of the region across a broad array of contexts has not kept pace. Effects observed in pFC are legion, and their interpretations are generally informed by a particular perspective or methodology with little regard with how those effects may apply more broadly. Consequently, the number of specific roles and functions that have been identified makes the region a very crowded place indeed and one that appears unlikely to be explained by a single general principle. In this theoretical article, we describe how the function of large portions of pFC can be accommodated by a single explanatory framework based on the computation and manipulation of error signals and how this framework may be extended to account for additional parts of pFC.


Subject(s)
Models, Neurological , Prefrontal Cortex/physiology , Humans , Neural Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...