Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8253, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086917

ABSTRACT

Control over the electrical contact to an individual molecule is one of the biggest challenges in molecular optoelectronics. The mounting of individual chromophores on extended tripodal scaffolds enables both efficient electrical and mechanical decoupling of individual chromophores from metallic leads. Core-substituted naphthalene diimides fixed perpendicular to a gold substrate by a covalently attached extended tripod display high stability with well-defined and efficient electroluminescence down to the single-molecule level. The molecularly controlled spatial arrangement balances the electric conduction for electroluminescence and the insulation to avoid non-radiative carrier recombination, enabling the spectrally and spatially resolved electroluminescence of individual self-decoupled chromophores in a scanning tunneling microscope. Hot luminescence bands are even visible in single self-decoupled chromophores, documenting the mechanical decoupling between the vibrons of the chromophore and the substrate.

2.
Phys Rev Lett ; 127(12): 123201, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34597069

ABSTRACT

Rare-earth based single-molecule magnets are promising candidates for magnetic information storage including qubits as their large magnetic moments are carried by localized 4f electrons. This shielding from the environment in turn hampers a direct electronic access to the magnetic moment. Here, we present the indirect readout of the Dy moment in Bis(phthalocyaninato)dysprosium (DyPc_{2}) molecules on Au(111) using milli-Kelvin scanning tunneling microscopy. Because of an unpaired electron on the exposed Pc ligand, the molecules show a Kondo resonance that is, however, split by the ferromagnetic exchange interaction between the unpaired electron and the Dy angular momentum. Using spin-polarized scanning tunneling spectroscopy, we read out the Dy magnetic moment as a function of the applied magnetic field, exploiting the spin polarization of the exchange-split Kondo state.

SELECTION OF CITATIONS
SEARCH DETAIL
...