Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(12): 19686-19702, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381379

ABSTRACT

We consider optical transmission systems based on the nonlinear frequency division multiplexing (NFDM) concept, i.e., the systems employing the nonlinear Fourier transform (NFT) for signal processing and data modulation. Our work specifically addresses the double-polarization (DP) NFDM setup that utilizes the so-called b-modulation, the most efficient NFDM method proposed up-to-date. We extend the previously-developed analytical approach based on the adiabatic perturbation theory for the continuous nonlinear Fourier spectrum (b-coefficient) onto the DP case to obtain the leading order of continuous input-output signal relation, i.e., the asymptotic channel model, for an arbitrary b-modulated DP-NFDM optical communication system. Our main result is in deriving the relatively simple analytical expressions for the power spectral density of the components of effective conditionally Gaussian input-dependent noise emerging inside the nonlinear Fourier domain. We also demonstrate that our analytical expressions are in remarkable agreement with direct numerical results if one extracts the "processing noise" arising due to the imprecision of numerical NFT operations.

2.
Opt Express ; 27(4): 4424-4434, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876061

ABSTRACT

A synthetic photonic lattice (SPL) is a re-configurable test-bed for studying the dynamics of one-dimensional mesh lattices including the photonic implementations of discrete time quantum walks. Unlike other realizations of photonic lattices, SPL possesses easy and fast control of lattice parameters. Here we consider disordered SPL where the coupling ratio between the two fiber loops realizing the lattice is random but does not change between the round trips. We obtain a new analytical result for the localization length (inverse Lyapunov exponent) for a practical case of weak coupling disorder. We also numerically study the dynamics of the pulse train circulating within the loops and observe that despite delocalization transition at the band center the pulse spreading is arrested even at small values of the disorder.

3.
Nat Commun ; 7: 12710, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27611059

ABSTRACT

What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km.

4.
Phys Rev Lett ; 113(1): 013901, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-25032926

ABSTRACT

We scrutinize the concept of integrable nonlinear communication channels, resurrecting and extending the idea of eigenvalue communications in a novel context of nonsoliton coherent optical communications. Using the integrable nonlinear Schrödinger equation as a channel model, we introduce a new approach-the nonlinear inverse synthesis method-for digital signal processing based on encoding the information directly onto the nonlinear signal spectrum. The latter evolves trivially and linearly along the transmission line, thus, providing an effective eigenvalue division multiplexing with no nonlinear channel cross talk. The general approach is illustrated with a coherent optical orthogonal frequency division multiplexing transmission format. We show how the strategy based upon the inverse scattering transform method can be geared for the creation of new efficient coding and modulation standards for the nonlinear channel.

5.
Article in English | MEDLINE | ID: mdl-24827318

ABSTRACT

We investigate the mobility of nonlinear localized modes in a generalized discrete Ginzburg-Landau-type model, describing a one-dimensional waveguide array in an active Kerr medium with intrinsic, saturable gain and damping. It is shown that exponentially localized, traveling discrete dissipative breather-solitons may exist as stable attractors supported only by intrinsic properties of the medium, i.e., in the absence of any external field or symmetry-breaking perturbations. Through an interplay by the gain and damping effects, the moving soliton may overcome the Peierls-Nabarro barrier, present in the corresponding conservative system, by self-induced time-periodic oscillations of its power (norm) and energy (Hamiltonian), yielding exponential decays to zero with different rates in the forward and backward directions. In certain parameter windows, bistability appears between fast modes with small oscillations and slower, large-oscillation modes. The velocities and the oscillation periods are typically related by lattice commensurability and exhibit period-doubling bifurcations to chaotically "walking" modes under parameter variations. If the model is augmented by intersite Kerr nonlinearity, thereby reducing the Peierls-Nabarro barrier of the conservative system, the existence regime for moving solitons increases considerably, and a richer scenario appears including Hopf bifurcations to incommensurately moving solutions and phase-locking intervals. Stable moving breathers also survive in the presence of weak disorder.

6.
Opt Express ; 21(20): 24344-67, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104344

ABSTRACT

Using the integrable nonlinear Schrödinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called "eigenvalue communication" idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed.

7.
Opt Lett ; 37(22): 4600-2, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23164851

ABSTRACT

We examine the existence and stability of discrete spatial solitons in coupled nonlinear lasing cavities (waveguide resonators), addressing the case of active defocusing media, where the gain exceeds damping in the low-amplitude limit. A new family of stable localized structures is found: these are bright and gray cavity solitons representing the connections between homogeneous and inhomogeneous states. Solitons of this type can be controlled by discrete diffraction and are stable when the bistability of homogenous states is absent.

8.
Phys Rev Lett ; 108(18): 183902, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22681077

ABSTRACT

Clusters of temporal optical solitons--stable self-localized light pulses preserving their form during propagation--exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission.

9.
Phys Rev Lett ; 107(8): 083901, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21929169

ABSTRACT

We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the periodic ones.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036608, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20365897

ABSTRACT

We have studied the soliton propagation through a segment containing random pointlike scatterers. In the limit of small concentration of scatterers when the mean distance between the scatterers is larger than the soliton width, a method has been developed for obtaining the statistical characteristics of the soliton transmission through the segment. The method is applicable for any classical particle traversing through a disordered segment with the given velocity transformation after each act of scattering. In the case of weak scattering and relatively short disordered segment the transmission time delay of a fast soliton is mostly determined by the shifts of the soliton center after each act of scattering. For sufficiently long segments the main contribution to the delay is due to the shifts of the amplitude and velocity of a fast soliton after each scatterer. Corresponding crossover lengths for both cases of light and heavy solitons have been obtained. We have also calculated the exact probability density function of the soliton transmission time delay for a sufficiently long segment. In the case of weak identical scatterers the latter is a universal function which depends on a sole parameter--the mean number of scatterers in a segment.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 2): 046610, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999554

ABSTRACT

We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(3 Pt 2): 036616, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17500818

ABSTRACT

We address the breakup (splitting) of multisoliton solutions of the nonlinear Schrödinger equation (NLSE), occurring due to linear loss. Two different approaches are used for the study of the splitting process. The first one is based on the direct numerical solution of the linearly damped NLSE and the subsequent analysis of the eigenvalue drift for the associated Zakharov-Shabat spectral problem. The second one involves the multisoliton adiabatic perturbation theory applied for studying the evolution of the solution parameters, with the linear loss taken as a small perturbation. We demonstrate that in the case of strong nonadiabatic loss the evolution of the Zakharov-Shabat eigenvalues can be quite nontrivial. We also demonstrate that the multisoliton breakup can be correctly described within the framework of the adiabatic perturbation theory and can take place even due to small linear loss. Eventually we elucidate the occurrence of the splitting and its dependence on the phase mismatch between the solitons forming a two-soliton bound state.

SELECTION OF CITATIONS
SEARCH DETAIL
...