Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 56(7): 856-866, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36926853

ABSTRACT

ConspectusPredicting mechanisms and rates of nonadiabatic spin-dependent processes including photoinduced intersystem crossings, thermally activated spin-forbidden reactions, and spin crossovers in metal centers is a very active field of research. These processes play critical roles in transition-metal-based and metalloenzymatic catalysis, molecular magnets, light-harvesting materials, organic light-emitting diodes, photosensitizers for photodynamic therapy, and many other applications. Therefore, accurate modeling of spin-dependent processes in complex systems and on different time scales is important for many problems in chemistry, biochemistry, and materials sciences.Nonadiabatic statistical theory (NAST) and nonadiabatic molecular dynamics (NAMD) are two complementary approaches to modeling the kinetics and dynamics of spin-dependent processes. NAST predicts the probabilities and rate constants of nonradiative transitions between electronic states with different spin multiplicities using molecular properties at only few critical points on the potential energy surfaces (PESs), including the reactant minimum and the minimum energy crossing point (MECP) between two spin states. This makes it possible to obtain molecular properties for NAST calculations using accurate but often computationally expensive electronic structure methods, which is critical for predicting the rate constants of spin-dependent processes. Alternatively, NAST can be used to study spin-dependent processes in very large complex molecular systems using less computationally expensive electronic structure methods. The nuclear quantum effects, such as zero-point vibrational energy, tunneling, and interference between reaction paths can be easily incorporated. However, the statistical and local nature of NAST makes it more suitable for large systems and slow kinetics. In contrast, NAMD explores entire PESs of interacting electronic states, making it ideal for modeling fast barrierless spin-dependent processes. Because the knowledge of large portions of PESs is often needed, the simulations require a very large number of electronic structure calculations, which limits the NAMD applicability to relatively small molecular systems and ultrafast kinetics.In this Account, we discuss our contribution to the development of the NAST and NAMD approaches for predicting the rates and mechanism of spin-dependent processes. First, we briefly describe our NAST and NAMD implementations. The NAST implementation is an extension of the transition state theory to the processes involving two crossing potential energy surfaces of different spin multiplicities. The NAMD approach includes the trajectory surface hopping (TSH) and ab initio multiple spawning (AIMS) methods. Second, we discuss several applications of NAST and NAMD to model spin-dependent processes in different systems. The NAST applicability to large complex systems is demonstrated by the studies of the spin-forbidden isomerization of the active sites of metal-sulfur proteins. Our implementation of the MECP search algorithm within the fully ab initio fragment molecular orbital method allows applying NAST to systems with thousands of atoms, such as the solvated protein rubredoxin. Applications of NAMD to ultrafast spin-dependent processes are represented by the generalized AIMS simulations utilizing the fast GPU-based TeraChem electronic structure program to gain insight into the complex photoexcited state relaxation in 2-cyclopentenone.

2.
Top Curr Chem (Cham) ; 380(2): 15, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35201520

ABSTRACT

We present a nonadiabatic statistical theory (NAST) package for predicting kinetics of spin-dependent processes, such as intersystem crossings, spin-forbidden unimolecular reactions, and spin crossovers. The NAST package can calculate the probabilities and rates of transitions between the electronic states of different spin multiplicities. Both the microcanonical (energy-dependent) and canonical (temperature-dependent) rate constants can be obtained. Quantum effects, including tunneling, zero-point vibrational energy, and reaction path interference, can be accounted for. In the limit of an adiabatic unimolecular reaction proceeding on a single electronic state, NAST reduces to the traditional transition state theory. Because NAST requires molecular properties at only a few points on potential energy surfaces, it can be applied to large molecular systems, used with accurate high-level electronic structure methods, and employed to study slow nonadiabatic processes. The essential NAST input data include the nuclear Hessian at the reactant minimum, as well as the nuclear Hessians, energy gradients, and spin-orbit coupling at the minimum energy crossing point (MECP) between two states. The additional computational tools included in the NAST package can be used to extract the required input data from the output files of electronic structure packages, calculate the effective Hessian at the MECP, and fit the reaction coordinate for more advanced NAST calculations. We describe the theory, its implementation, and three examples of application to different molecular systems.

3.
Article in English | MEDLINE | ID: mdl-25123937

ABSTRACT

The novel Sn(Gly)2⋅H2O complex compound has been synthesized and characterized by TGA, IR and Raman spectroscopy. Molecular spectroscopy and ab initio simulation have given the evidence of glycine molecule being coordinated to Sn(II) as bidentate chelating ligand by oxygen atom of carboxyl group and nitrogen atom of amino group. Water molecule is bonded with amino and carboxylic groups by hydrogen bonds in the out sphere. The M06, TPSS, TPSSm, TPSSh and revTPSS density functionals have been tested for calculation of structural and vibrational data. The vibrational assignment of experimental IR and Raman and simulated spectra has been carried out. The TPSS and TPSSm density functionals and Def2-TZVP basis set have provided the most accurate results.


Subject(s)
Glycine/chemistry , Models, Molecular , Quantum Theory , Tin/chemistry , Calorimetry, Differential Scanning , Differential Thermal Analysis , Isomerism , Molecular Conformation , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Thermodynamics , Thermogravimetry , Vibration
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 122: 565-70, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24334020

ABSTRACT

The novel complex of Sn(II) with L-cysteine (L-H2Cys) has been synthesized and characterized by elemental analysis, TGA and IR spectroscopy. Vibrational assignment and DFT/PBE0/def2-TZVP ab initio simulation give evidence of cysteine molecule being coordinated to Sn(II) as three-dentate chelating N,O,S-donor ligand. The four Perdew density functionals TPSS, PBE0, PBE, TPSSh have been tested to provide consistency of simulated and experimental IR spectra, the best result is provided by unweighted Hartree-Fock density functionals (PBE, TPSS). On the contrary, the Hartree-Fock weighted functionals (PBE0, TPPSh) provide the most accurate geometry optimization. Unharmonic frequencies are obtained via ab initio vibrational self-consistent field (PT2-VSCF) calculations at DFT/TPSS/Def2-TZVP level, the vibrational assignment of IR spectra has been carried out.


Subject(s)
Coordination Complexes/chemistry , Cysteine/chemistry , Tin/chemistry , Models, Molecular , Molecular Conformation , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...