Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Blood Adv ; 8(14): 3798-3809, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38805575

ABSTRACT

ABSTRACT: Fibrinolytics delivered into the general circulation lack selectivity for nascent thrombi, reducing efficacy and increasing the risk of bleeding. Urokinase-type plasminogen activator (uPA) transgenically expressed within murine platelets provided targeted thromboprophylaxis without causing bleeding but is not clinically feasible. Recent advances in generating megakaryocytes prompted us to develop a potentially clinically relevant means to produce "antithrombotic" platelets from CD34+ hematopoietic stem cell-derived in vitro-grown megakaryocytes. CD34+ megakaryocytes internalize and store in alpha granules (α-granules) single-chain uPA (scuPA) and a plasmin-resistant thrombin-activatable variant (uPAT). Both uPAs colocalized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3, but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34+ megakaryocytes was mediated, in part, via LRP1 and αIIbß3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV but not endogenous VWF in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid artery injury model in nonobese diabetic-severe combined immunodeficiency IL2rγnull (NSG) mice homozygous for VWFR1326H (a mutation switching binding VWF specificity from mouse to human glycoprotein Ibα) to test whether platelets derived from scuPA- or uPAT-megakaryocytes would prevent thrombus formation. NSG/VWFR1326H mice exhibited a lower thrombotic burden after carotid artery injury compared with NSG mice unless infused with human platelets or megakaryocytes, whereas intravenous injection of uPA-megakaryocytes generated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies describe the use of in vitro-generated megakaryocytes as a potential platform for delivering uPA or other ectopic proteins within platelet α-granules to sites of vascular injury.


Subject(s)
Megakaryocytes , Urokinase-Type Plasminogen Activator , Megakaryocytes/metabolism , Megakaryocytes/cytology , Urokinase-Type Plasminogen Activator/metabolism , Humans , Animals , Mice , Fibrinolysis/drug effects , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Blood Platelets/metabolism , Thrombosis/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cytoplasmic Granules/metabolism , Antigens, CD34/metabolism
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068898

ABSTRACT

Ischemic heart disease and its complications, such as myocardial infarction and heart failure, are the leading causes of death in modern society. The adult heart innately lacks the capacity to regenerate the damaged myocardium after ischemic injury. Multiple lines of evidence indicated that stem-cell-based transplantation is one of the most promising treatments for damaged myocardial tissue. Different kinds of stem cells have their advantages for treating ischemic heart disease. One facet of their mechanism is the paracrine effect of the transplanted cells. Particularly promising are stem cells derived from cardiac tissue per se, referred to as cardiosphere-derived cells (CDCs), whose therapeutic effect is mediated by the paracrine mechanism through secretion of multiple bioactive molecules providing immunomodulatory, angiogenic, anti-fibrotic, and anti-inflammatory effects. Although secretome-based therapies are increasingly being used to treat various cardiac pathologies, many obstacles remain because of population heterogeneity, insufficient understanding of potential modulating compounds, and the principles of secretome regulation, which greatly limit the feasibility of this technology. In addition, components of the inflammatory microenvironment in ischemic myocardium may influence the secretome content of transplanted CDCs, thus altering the efficacy of cell therapy. In this work, we studied how Tumor necrosis factor alpha (TNFa), as a key component of the pro-inflammatory microenvironment in damaged myocardium from ischemic injury and heart failure, may affect the secretome content of CDCs and their angiogenic properties. We have shown for the first time that TNFa may act as a promising compound modulating the CDC secretome, which induces its profiling to enhance proangiogenic effects on endothelial cells. These results allow us to elucidate the underlying mechanisms of the impact of the inflammatory microenvironment on transplanted CDCs and may contribute to the optimization of CDC efficiency and the development of the technology for producing the CDC secretome with enhanced proangiogenic properties for cell-free therapy.


Subject(s)
Angiogenesis , Heart Failure , Myocardial Ischemia , Tumor Necrosis Factor-alpha , Humans , Endothelial Cells/metabolism , Heart Failure/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Secretome , Tumor Necrosis Factor-alpha/metabolism
3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139105

ABSTRACT

Cardiosphere-derived cells (CDCs) are currently being evaluated in clinical trials as a potential therapeutic tool for regenerative medicine. The effectiveness of transplanted CDCs is largely attributed to their ability to release beneficial soluble factors to enhance therapeutic effects. An emerging area of research is the pretreatment of stem cells, including CDCs, with various cytokines to improve their therapeutic properties. This strategy aims to enhance their survival, proliferation, differentiation, and paracrine activities after transplantation. In our study, we investigated the differential effects of various cytokines and TLR ligands on the secretory phenotype of human CDCs. Using a magnetic bead-based immunoassay, we analyzed the CDCs-conditioned media for 41 cytokines and growth factors and detected the presence of 21 cytokines. We found that CDC incubation with lipopolysaccharide, a TLR4 ligand, and the cytokine combination of TNF/IFN significantly increased the secretion of most of the cytokines detected. Specifically, we observed an increased secretion and gene expression of IP10, MCP3, IL8, and VEGFA. In contrast, the TLR3 ligand polyinosinic-polycytidylic acid and TGF-beta had minimal effects on CDC cytokine secretion. Additionally, TNF/IFN, but not LPS, enhanced ICAM1 expression. Our findings offer new insights into the role of cytokines in potentially modulating the biology and regenerative potential of CDCs.


Subject(s)
Cytokines , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Cytokines/metabolism , Ligands , Cell Differentiation , Stem Cells/physiology
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958542

ABSTRACT

One of the largest challenges to the implementation of cardiac cell therapy is identifying selective reparative targets to enhance stem/progenitor cell therapeutic efficacy. In this work, we hypothesized that such a target could be an urokinase-type plasminogen activator receptor (uPAR)-a glycosyl-phosphatidyl-inositol-anchored membrane protein, interacting with urokinase. uPAR is able to form complexes with various transmembrane proteins such as integrins, activating intracellular signaling pathway and thus regulating multiple cell functions. We focused on studying the CD117+ population of cardiac mesenchymal progenitor cells (MPCs), expressing uPAR on their surface. It was found that the number of CD117+ MPCs in the heart of the uPAR-/- mice is lower, as well as their ability to proliferate in vitro compared with cells from wild-type animals. Knockdown of uPAR in CD117+ MPCs of wild-type animals was accompanied by a decrease in survival rate and Akt signaling pathway activity and by an increase in the level of caspase activity in these cells. That suggests the role of uPAR in supporting cell survival. After intramyocardial transplantation of uPAR(-) MPCs, reduced cell retention and angiogenesis stimulation were observed in mice with myocardial infarction model compared to uPAR(+) cells transplantation. Taken together, the present results appear to prove a novel mechanism of uPAR action in maintaining the survival and angiogenic properties of CD117+ MPCs. These results emphasize the importance of the uPAR as a potential pharmacological target for the regulation of reparative properties of myocardial mesenchymal progenitor cells.


Subject(s)
Mesenchymal Stem Cells , Myocardium , Receptors, Urokinase Plasminogen Activator , Animals , Mice , Integrins , Mesenchymal Stem Cells/metabolism , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Myocardium/cytology
5.
Cells ; 11(20)2022 10 18.
Article in English | MEDLINE | ID: mdl-36291145

ABSTRACT

A Matrigel-based tube formation assay is a simple and widely accepted 2D angiogenesis model in vitro. Extracellular matrix (EM) proteins and growth factors (GFs) from MatrigelTM exclusively trigger endothelial cell (EC) tubular network (ETN) formation. Co-culture of ECs with mesenchymal stromal cells (MSCs) is another and more reliable in vitro angiogenesis assay. MSCs modulate ETN formation through intercellular interactions and as a supplier of EM and GFs. The aim of the present study was to compare the expression profile of ECs in both models. We revealed upregulation of the uPA, uPAR, Jagged1, and Notch2 genes in dividing/migrating ECs and for ECs in both experimental models at 19 h. The expression of endothelial-mesenchymal transition genes largely increased in co-cultured ECs whereas Notch and Hippo signaling pathway genes were upregulated in ECs on MatrigelTM. We showed that in the co-culture model, basement membrane (BM) deposition is limited only to cell-to-cell contacts in contrast to MatrigelTM, which represents by itself fully pre-assembled BM matrix. We suggest that ETN in a co-culture model is still in a dynamic process due to immature BM whereas ECs in the MatrigelTM assay seem to be at the final stage of ETN formation.


Subject(s)
Mesenchymal Stem Cells , Neovascularization, Physiologic , Neovascularization, Physiologic/physiology , Cells, Cultured , Coculture Techniques , Mesenchymal Stem Cells/metabolism , Endothelial Cells/metabolism
6.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119157, 2022 01.
Article in English | MEDLINE | ID: mdl-34619163

ABSTRACT

Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.e. the serine protease uPA, its inhibitor PAI-1, receptor uPAR/CD87, clearance by the low-density lipoprotein receptor-related protein (LRP1) and their molecular partners, in the formation of ETNs supported by adipose tissue-derived MSC. Co-culture of human umbilical vein ECs (HUVEC) with MSC increased mRNA expression levels of uPAR, MMP14, VEGFR2, TGFß1, integrin ß3 and Notch pathway components (Notch1 receptor and ligands: Dll1, Dll4, Jag1) in HUVECs and uPA, uPAR, TGFß1, integrin ß3, Jag1, Notch3 receptor in MSC. Inhibition at several steps in the activation process indicates that uPA, uPAR and LRP1 cross-talk with αv-integrins, VEGFR2 and Notch receptors/ligands to mediate ETN formation in HUVEC-MSC co-culture. The urokinase system mediates ETN formation through the coordinated action of uPAR, uPA's catalytic activity, its binding to uPAR and its nuclear translocation. These studies identify potential targets to help control aberrant angiogenesis with minimal impact on healthy vasculature.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic , Signal Transduction , Urokinase-Type Plasminogen Activator/metabolism , CD18 Antigens/metabolism , Cells, Cultured , Fibronectins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Matrix Metalloproteinase 14/metabolism , Receptors, Notch/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
7.
Biol Open ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34494647

ABSTRACT

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are a safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment of MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types. We infected human and rat adipose-tissue MSC with hybrid AAV-DJ serotype vectors carrying GFP and SCF genes. GFP expression from AAV-DJ was about 1.5-fold superior to that observed with AAV-2 and lasted for at least 21 days as was evaluated by flow cytometry and fluorescence microscopy. AAV-DJ proves to be suitable for the infection of rat and human MSC with a similar efficiency. Infected MSC were still viable but showed a 25-30% growth-rate slowdown. Moreover, we found an increase of SERPINB2 mRNA expression in human MSC while expression of other oxidative stress markers and extracellular matrix proteins was not affected. These results suggest that there is a differential cellular response in MSC infected with AAV viral vectors, which should be taken into account as it can affect the expected outcome for the therapeutic application.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors/blood , Mesenchymal Stem Cells/virology , Viral Proteins/blood , Animals , Green Fluorescent Proteins/metabolism , Humans , Rats , Serogroup , Stem Cell Factor/metabolism , Viral Tropism/genetics
8.
Int J Mol Sci ; 21(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339427

ABSTRACT

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/therapy , Pericardium/metabolism , Stem Cell Factor/metabolism , Adipose Tissue/cytology , Animals , Cells, Cultured , HEK293 Cells , Humans , Male , Pericardium/physiology , Rats , Rats, Wistar , Regeneration , Stem Cell Factor/genetics
9.
Int J Mol Sci ; 20(12)2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31238604

ABSTRACT

Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model. Angiogenic and neuroprotective effects were assessed following ADSC transplantation in suspension or in the form of cell sheet. We found superior blood flow restoration, tissue vascularization and innervation, and fibrosis reduction after transplantation of HGF-producing ADSC sheet compared to other groups. We suggest that the observed effects are determined by pleiotropic effects of HGF, along with the multifactorial paracrine action of ADSC which remain viable and functionally active within the engineered cell construct. Thus, we demonstrated the high therapeutic potential of the utilized approach for skeletal muscle recovery after ischemic damage associated with complex tissue degenerative effects.


Subject(s)
Adipose Tissue/cytology , Hepatocyte Growth Factor/biosynthesis , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Stromal Cells/metabolism , Stromal Cells/transplantation , Animals , Cell Culture Techniques , Cell Differentiation/genetics , Cell Movement/drug effects , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Gene Expression , Hepatocyte Growth Factor/genetics , Humans , Ischemia , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Neuroglia/cytology , Neuroglia/drug effects , Neuroglia/metabolism , Neuronal Outgrowth/drug effects
10.
PLoS One ; 13(5): e0197566, 2018.
Article in English | MEDLINE | ID: mdl-29787588

ABSTRACT

Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both-VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both-VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both-VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.


Subject(s)
Genetic Therapy/methods , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/therapeutic use , Myocardial Infarction/therapy , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Chemokine CCL2/biosynthesis , Disease Models, Animal , Gene Expression , Hepatocyte Growth Factor/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-8/biosynthesis , Male , Monocytes/metabolism , Monocytes/pathology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Plasmids/administration & dosage , Plasmids/genetics , Rats , Rats, Wistar , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
11.
J Biol Chem ; 292(50): 20528-20543, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28972182

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.


Subject(s)
Lung Neoplasms/metabolism , Lung/metabolism , Lymphangioleiomyomatosis/metabolism , Mutation , Neoplasm Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Angiomyolipoma/drug therapy , Angiomyolipoma/genetics , Angiomyolipoma/metabolism , Angiomyolipoma/pathology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Lung/drug effects , Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lymphangioleiomyomatosis/drug therapy , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/pathology , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Transplantation , RNA Interference , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Burden/drug effects , Tumor Suppressor Proteins/genetics , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/genetics
12.
Tissue Cell ; 49(1): 64-71, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28041835

ABSTRACT

Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC. Our in-house developed method using chelation by Versene solution was compared to UpCell™ thermoresponsive plates in terms of CSC proliferation, viability, gap junction formation and engraftment in a model of myocardial infarction. Use of Versene solution instead of thermoresponsive dishes resulted in comparable CS thickness (approximately 100mcm), cell proliferation rate and no signs of apoptosis detected in both types of constructs. However, we observed a minor reduction of gap junction count in Versene-treated CS. At day 30 after delivery to infarcted myocardium both types of CS retained at the site of transplantation and contained comparable amounts of proliferating cells indicating engraftment. Thus, we may conclude that detachment of CS from c-kit+ CSC using Versene solution followed by mechanical treatment is an alternative to thermoresponsive plates allowing use of routinely available materials to generate constructs for cardiac repair.


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Myocardial Infarction/therapy , Stem Cell Transplantation , Animals , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Edetic Acid/pharmacology , Gap Junctions/drug effects , Humans , Myocardial Infarction/pathology , Myocardium/pathology , Rats , Regenerative Medicine , Stem Cells/drug effects
13.
J Cell Biochem ; 117(1): 180-96, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26096299

ABSTRACT

Tissue regeneration requires coordinated "teamwork" of growth factors, proteases, progenitor and immune cells producing inflammatory cytokines. Mesenchymal stem cells (MSC) might play a pivotal role by substituting cells or by secretion of growth factors or cytokines, and attraction of progenitor and inflammatory cells, which participate in initial stages of tissue repair. Due to obvious impact of inflammation on regeneration it seems promising to explore whether inflammatory factors could influence proangiogenic abilities of MSC. In this study we investigated effects of TNF-α on activity of adipose-derived stem cells (ADSC). We found that treatment with TNF-α enhances ADSC proliferation, F-actin microfilament assembly, increases cell motility and migration through extracellular matrix. Exposure of ADSC to TNF-α led to increased mRNA expression of proangiogenic factors (FGF-2, VEGF, IL-8, and MCP-1), inflammatory cytokines (IL-1ß, IL-6), proteases (MMPs, uPA) and adhesion molecule ICAM-1. At the protein level, VEGF, IL-8, MCP-1, and ICAM-1 production was also up-regulated. Pre-incubation of ADSC with TNF-α-enhanced adhesion of monocytes to ADSC but suppressed adherence of ADSC to endothelial cells (HUVEC). Stimulation with TNF-α triggers ROS generation and activates a number of key intracellular signaling mediators known to positively regulate angiogenesis (Akt, small GTPase Rac1, ERK1/2, and p38 MAP-kinases). Pre-treatment with TNF-α-enhanced ADSC ability to promote growth of microvessels in a fibrin gel assay and accelerate blood flow recovery, which was accompanied by increased arteriole density and reduction of necrosis in mouse hind limb ischemia model. These findings indicate that TNF-α plays a role in activation of ADSC angiogenic and regenerative potential.


Subject(s)
Adipose Tissue/cytology , Stem Cells/cytology , Stem Cells/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Actins/metabolism , Adipose Tissue/metabolism , Adult , Animals , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Flow Cytometry , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Male , Mice , Middle Aged , Stem Cells/drug effects , Young Adult
14.
Stem Cell Res Ther ; 6: 204, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26503601

ABSTRACT

INTRODUCTION: Cell therapy using adipose-derived stromal cells (ADSC) is an intensively developing approach to promote angiogenesis and regeneration. Administration technique is crucial and among others minimal constructs - cell sheets (CS) have certain advantages. Delivery of CS allows transplantation of cells along with matrix proteins to facilitate engraftment. Cells' therapeutic potential can be also increased by expression of proangiogenic factors by viral transduction. In this work we report on therapeutic efficacy of CS from mouse ADSC transduced to express human vascular endothelial growth factor 165 a/a isoform (VEGF165), which showed potency to restore perfusion and protect tissue in a model of limb ischemia. METHODS: Mouse ADSC (mADSC) isolated from C57 male mice were expanded for CS formation (10(6)cells per CS). Constructs were transduced to express human VEGF165 by baculoviral (BV) system. CS were transplanted subcutaneously to mice with surgically induced limb ischemia and followed by laser Doppler perfusion measurements. At endpoint animals were sacrificed and skeletal muscle was evaluated for necrosis and vessel density; CS with underlying muscle was stained for apoptosis, proliferation, monocytes and blood vessels. RESULTS: Using BV system and sodium butyrate treatment we expressed human VEGF165 in mADSC (production of VEGF165 reached ≈ 25-27 ng/ml/10(5) cells) and optimized conditions to ensure cells' viability after transduction. Implantation of mock-transduced CS resulted in significant improvement of limb perfusion, increased capillary density and necrosis reduction at 2 weeks post-surgery compared to untreated animals. Additional improvement of blood flow and angiogenesis was observed after transplantation of VEGF165-expressing CS indicating enhanced therapeutic potential of genetically modified constructs. Moreover, we found delivery of mADSC as CS to be superior to equivalent dose of suspended cells in terms of perfusion and angiogenesis. Histology analysis of extracted CS detected limited proliferation and approximately 10 % prevalence of apoptosis in transplanted mADSC. Significant vascularization of CS and infiltration by monocytes were found in both - BV-transduced and control CS indicating graft and host interaction after transplantation. CONCLUSIONS: Delivery of ADSC by subcutaneous transplantation of CS is effective for stimulation of angiogenesis and tissue protection in limb ischemia with a potential for efficacy improvement by BV transduction to express VEGF165.


Subject(s)
Ischemia/therapy , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Stem Cell Transplantation , Vascular Endothelial Growth Factor A/biosynthesis , Animals , Apoptosis , Baculoviridae/genetics , Cell Proliferation , Cell Survival , Cells, Cultured , Hindlimb/blood supply , Male , Mice, Inbred C57BL , Microvessels/physiology , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Myositis/prevention & control , Necrosis/prevention & control , Regional Blood Flow , Subcutaneous Fat/pathology , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...