Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Artif Intell Med ; 151: 102841, 2024 May.
Article in English | MEDLINE | ID: mdl-38658130

ABSTRACT

BACKGROUND AND OBJECTIVE: In everyday clinical practice, medical decision is currently based on clinical guidelines which are often static and rigid, and do not account for population variability, while individualized, patient-oriented decision and/or treatment are the paradigm change necessary to enter into the era of precision medicine. Most of the limitations of a guideline-based system could be overcome through the adoption of Clinical Decision Support Systems (CDSSs) based on Artificial Intelligence (AI) algorithms. However, the black-box nature of AI algorithms has hampered a large adoption of AI-based CDSSs in clinical practice. In this study, an innovative AI-based method to compress AI-based prediction models into explainable, model-agnostic, and reduced decision support systems (NEAR) with application to healthcare is presented and validated. METHODS: NEAR is based on the Shapley Additive Explanations framework and can be applied to complex input models to obtain the contributions of each input feature to the output. Technically, the simplified NEAR models approximate contributions from input features using a custom library and merge them to determine the final output. Finally, NEAR estimates the confidence error associated with the single input feature contributing to the final score, making the result more interpretable. Here, NEAR is evaluated on a clinical real-world use case, the mortality prediction in patients who experienced Acute Coronary Syndrome (ACS), applying three different Machine Learning/Deep Learning models as implementation examples. RESULTS: NEAR, when applied to the ACS use case, exhibits performances like the ones of the AI-based model from which it is derived, as in the case of the Adaptive Boosting classifier, whose Area Under the Curve is not statistically different from the NEAR one, even the model's simplification. Moreover, NEAR comes with intrinsic explainability and modularity, as it can be tested on the developed web application platform (https://neardashboard.pythonanywhere.com/). CONCLUSIONS: An explainable and reliable CDSS tailored to single-patient analysis has been developed. The proposed AI-based system has the potential to be used alongside the clinical guidelines currently employed in the medical setting making them more personalized and dynamic and assisting doctors in taking their everyday clinical decisions.


Subject(s)
Algorithms , Artificial Intelligence , Decision Support Systems, Clinical , Decision Support Systems, Clinical/organization & administration , Humans
2.
Biotechnol Bioeng ; 121(6): 1755-1758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587175

ABSTRACT

Bitter taste involves the detection of diverse chemical compounds by a family of G protein-coupled receptors, known as taste receptor type 2 (TAS2R). It is often linked to toxins and harmful compounds and in particular bitter taste receptors participate in the regulation of glucose homeostasis, modulation of immune and inflammatory responses, and may have implications for various diseases. Human TAS2Rs are characterized by their polymorphism and differ in localization and function. Different receptors can activate various signaling pathways depending on the tissue and the ligand. However, in vitro screening of possible TAS2R ligands is costly and time-consuming. For this reason, in silico methods to predict bitterant-TAS2R interactions could be powerful tools to help in the selection of ligands and targets for experimental studies and improve our knowledge of bitter receptor roles. Machine learning (ML) is a branch of artificial intelligence that applies algorithms to large datasets to learn from patterns and make predictions. In recent years, there has been a record of numerous taste classifiers in literature, especially on bitter/non-bitter or bitter/sweet classification. However, only a few of them exploit ML to predict which TAS2R receptors could be targeted by bitter molecules. Indeed, the shortage and incompleteness of data on receptor-ligand associations in literature make this task non-trivial. In this work, we provide an overview of the state of the art dealing with this specific investigation, focusing on three ML-based models, namely BitterX (2016), BitterSweet (2019) and BitterMatch (2022). This review aims to establish the foundation for future research endeavours focused on addressing the limitations and drawbacks of existing models.


Subject(s)
Machine Learning , Receptors, G-Protein-Coupled , Taste , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Humans , Ligands
3.
Bioinformatics ; 39(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37326976

ABSTRACT

MOTIVATION: Biomarker discovery is one of the most frequent pursuits in bioinformatics and is crucial for precision medicine, disease prognosis, and drug discovery. A common challenge of biomarker discovery applications is the low ratio of samples over features for the selection of a reliable not-redundant subset of features, but despite the development of efficient tree-based classification methods, such as the extreme gradient boosting (XGBoost), this limitation is still relevant. Moreover, existing approaches for optimizing XGBoost do not deal effectively with the class imbalance nature of the biomarker discovery problems, and the presence of multiple conflicting objectives, since they focus on the training of a single-objective model. In the current work, we introduce MEvA-X, a novel hybrid ensemble for feature selection (FS) and classification, combining a niche-based multiobjective evolutionary algorithm (EA) with the XGBoost classifier. MEvA-X deploys a multiobjective EA to optimize the hyperparameters of the classifier and perform FS, identifying a set of Pareto-optimal solutions and optimizing multiple objectives, including classification and model simplicity metrics. RESULTS: The performance of the MEvA-X tool was benchmarked using one omics dataset coming from a microarray gene expression experiment, and one clinical questionnaire-based dataset combined with demographic information. MEvA-X tool outperformed the state-of-the-art methods in the balanced categorization of classes, creating multiple low-complexity models and identifying important nonredundant biomarkers. The best-performing run of MEvA-X for the prediction of weight loss using gene expression data yields a small set of blood circulatory markers which are sufficient for this precision nutrition application but need further validation. AVAILABILITY AND IMPLEMENTATION: https://github.com/PanKonstantinos/MEvA-X.


Subject(s)
Tool Use Behavior , Algorithms , Biomarkers , Computational Biology
4.
Front Artif Intell ; 6: 1230383, 2023.
Article in English | MEDLINE | ID: mdl-38174109

ABSTRACT

Introduction: Developing efficient methods to infer relations among different faces consisting of numerous expressions or on the same face at different times (e.g., disease progression) is an open issue in imaging related research. In this study, we present a novel method for facial feature extraction, characterization, and identification based on classical computer vision coupled with deep learning and, more specifically, convolutional neural networks. Methods: We describe the hybrid face characterization system named FRetrAIval (FRAI), which is a hybrid of the GoogleNet and the AlexNet Neural Network (NN) models. Images analyzed by the FRAI network are preprocessed by computer vision techniques such as the oriented gradient-based algorithm that can extract only the face region from any kind of picture. The Aligned Face dataset (AFD) was used to train and test the FRAI solution for extracting image features. The Labeled Faces in the Wild (LFW) holdout dataset has been used for external validation. Results and discussion: Overall, in comparison to previous techniques, our methodology has shown much better results on k-Nearest Neighbors (KNN) by yielding the maximum precision, recall, F1, and F2 score values (92.00, 92.66, 92.33, and 92.52%, respectively) for AFD and (95.00% for each variable) for LFW dataset, which were used as training and testing datasets. The FRAI model may be potentially used in healthcare and criminology as well as many other applications where it is important to quickly identify face features such as fingerprint for a specific identification target.

5.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38256871

ABSTRACT

Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.

6.
Microorganisms ; 10(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36144318

ABSTRACT

The application of plant beneficial microorganisms is widely accepted as an efficient alternative to chemical fertilizers and pesticides. It was shown that annually, mycorrhizal fungi and nitrogen-fixing bacteria are responsible for 5 to 80% of all nitrogen, and up to 75% of P plant acquisition. However, while bacteria are the most studied soil microorganisms and most frequently reported in the scientific literature, the role of fungi is relatively understudied, although they are the primary organic matter decomposers and govern soil carbon and other elements, including P-cycling. Many fungi can solubilize insoluble phosphates or facilitate P-acquisition by plants and, therefore, form an important part of the commercial microbial products, with Aspergillus, Penicillium and Trichoderma being the most efficient. In this paper, the role of fungi in P-solubilization and plant nutrition will be presented with a special emphasis on their production and application. Although this topic has been repeatedly reviewed, some recent views questioned the efficacy of the microbial P-solubilizers in soil. Here, we will try to summarize the proven facts but also discuss further lines of research that may clarify our doubts in this field or open new perspectives on using the microbial and particularly fungal P-solubilizing potential in accordance with the principles of the sustainability and circular economy.

7.
Eur Thyroid J ; 11(5)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35976137

ABSTRACT

To identify a peculiar genetic combination predisposing to differentiated thyroid carcinoma (DTC), we selected a set of single nucleotide polymorphisms (SNPs) associated with DTC risk, considering polygenic risk score (PRS), Bayesian statistics and a machine learning (ML) classifier to describe cases and controls in three different datasets. Dataset 1 (649 DTC, 431 controls) has been previously genotyped in a genome-wide association study (GWAS) on Italian DTC. Dataset 2 (234 DTC, 101 controls) and dataset 3 (404 DTC, 392 controls) were genotyped. Associations of 171 SNPs reported to predispose to DTC in candidate studies were extracted from the GWAS of dataset 1, followed by replication of SNPs associated with DTC risk (P < 0.05) in dataset 2. The reliability of the identified SNPs was confirmed by PRS and Bayesian statistics after merging the three datasets. SNPs were used to describe the case/control state of individuals by ML classifier. Starting from 171 SNPs associated with DTC, 15 were positive in both datasets 1 and 2. Using these markers, PRS revealed that individuals in the fifth quintile had a seven-fold increased risk of DTC than those in the first. Bayesian inference confirmed that the selected 15 SNPs differentiate cases from controls. Results were corroborated by ML, finding a maximum AUC of about 0.7. A restricted selection of only 15 DTC-associated SNPs is able to describe the inner genetic structure of Italian individuals, and ML allows a fair prediction of case or control status based solely on the individual genetic background.

8.
PLoS One ; 17(7): e0270955, 2022.
Article in English | MEDLINE | ID: mdl-35849605

ABSTRACT

Alsin is a protein known for its major role in neuronal homeostasis and whose mutation is associated with early-onset neurodegenerative diseases. It has been shown that its relocalization from the cytoplasm to the cell membrane is crucial to induce early endosomes maturation. In particular, evidences suggest that the N-terminal regulator of chromosome condensation 1 like domain (RLD) is necessary for membrane association thanks to its affinity to phosphoinositides, membrane lipids involved in the regulation of several signaling processes. Interestingly, this domain showed affinity towards phosphatidylinositol 3-phosphate [PI(3)P], which is highly expressed in endosomes membrane. However, Alsin structure has not been experimentally resolved yet and molecular mechanisms associated with its biological functions are mostly unknown. In this work, Alsin RLD has been investigated through computational molecular modeling techniques to analyze its conformational dynamics and obtain a representative 3D model of this domain. Moreover, a putative phosphoinositide binding site has been proposed and PI(3)P interaction mechanism studied. Results highlight the substantial conformational stability of Alsin RLD secondary structure and suggest the role of one highly flexible region in the phosphoinositides selectivity of this domain.


Subject(s)
Phosphatidylinositol Phosphates , Phosphatidylinositols , Binding Sites , Cell Membrane/metabolism , Endosomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , Protein Binding
9.
Eur Food Res Technol ; 248(9): 2215-2235, 2022.
Article in English | MEDLINE | ID: mdl-35637881

ABSTRACT

Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of variables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years. Supplementary Information: The online version contains supplementary material available at 10.1007/s00217-022-04044-5.

10.
Foods ; 10(5)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066453

ABSTRACT

Extra virgin olive oil (EVOO) is the highest quality of olive oil and is characterized by highly beneficial nutritional properties. The large increase in both consumption and fraud, for example through adulteration, creates new challenges and an increasing demand for developing new quality assessment methodologies that are easier and cheaper to perform. As of today, the determination of olive oil quality is performed by producers through chemical analysis and organoleptic evaluation. The chemical analysis requires advanced equipment and chemical knowledge of certified laboratories, and has therefore limited accessibility. In this work a minimalist, portable, and low-cost sensor is presented, which can perform olive oil quality assessment using fluorescence spectroscopy. The potential of the proposed technology is explored by analyzing several olive oils of different quality levels, EVOO, virgin olive oil (VOO), and lampante olive oil (LOO). The spectral data were analyzed using a large number of machine learning methods, including artificial neural networks. The analysis performed in this work demonstrates the possibility of performing the classification of olive oil in the three mentioned classes with an accuracy of 100%. These results confirm that this minimalist low-cost sensor has the potential to substitute expensive and complex chemical analysis.

11.
J Med Internet Res ; 23(5): e29058, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33999838

ABSTRACT

BACKGROUND: Several models have been developed to predict mortality in patients with COVID-19 pneumonia, but only a few have demonstrated enough discriminatory capacity. Machine learning algorithms represent a novel approach for the data-driven prediction of clinical outcomes with advantages over statistical modeling. OBJECTIVE: We aimed to develop a machine learning-based score-the Piacenza score-for 30-day mortality prediction in patients with COVID-19 pneumonia. METHODS: The study comprised 852 patients with COVID-19 pneumonia, admitted to the Guglielmo da Saliceto Hospital in Italy from February to November 2020. Patients' medical history, demographics, and clinical data were collected using an electronic health record. The overall patient data set was randomly split into derivation and test cohorts. The score was obtained through the naïve Bayes classifier and externally validated on 86 patients admitted to Centro Cardiologico Monzino (Italy) in February 2020. Using a forward-search algorithm, 6 features were identified: age, mean corpuscular hemoglobin concentration, PaO2/FiO2 ratio, temperature, previous stroke, and gender. The Brier index was used to evaluate the ability of the machine learning model to stratify and predict the observed outcomes. A user-friendly website was designed and developed to enable fast and easy use of the tool by physicians. Regarding the customization properties of the Piacenza score, we added a tailored version of the algorithm to the website, which enables an optimized computation of the mortality risk score for a patient when some of the variables used by the Piacenza score are not available. In this case, the naïve Bayes classifier is retrained over the same derivation cohort but using a different set of patient characteristics. We also compared the Piacenza score with the 4C score and with a naïve Bayes algorithm with 14 features chosen a priori. RESULTS: The Piacenza score exhibited an area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI 0.74-0.84, Brier score=0.19) in the internal validation cohort and 0.79 (95% CI 0.68-0.89, Brier score=0.16) in the external validation cohort, showing a comparable accuracy with respect to the 4C score and to the naïve Bayes model with a priori chosen features; this achieved an AUC of 0.78 (95% CI 0.73-0.83, Brier score=0.26) and 0.80 (95% CI 0.75-0.86, Brier score=0.17), respectively. CONCLUSIONS: Our findings demonstrated that a customizable machine learning-based score with a purely data-driven selection of features is feasible and effective for the prediction of mortality among patients with COVID-19 pneumonia.


Subject(s)
COVID-19/mortality , Machine Learning , Bayes Theorem , COVID-19/pathology , Cohort Studies , Electronic Health Records , Female , Humans , Italy/epidemiology , Male , Research Design , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
12.
Lancet ; 397(10270): 199-207, 2021 01 16.
Article in English | MEDLINE | ID: mdl-33453782

ABSTRACT

BACKGROUND: The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS. METHODS: Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC). FINDINGS: The PRAISE score showed an AUC of 0·82 (95% CI 0·78-0·85) in the internal validation cohort and 0·92 (0·90-0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70-0·78) in the internal validation cohort and 0·81 (0·76-0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66-0·75) in the internal validation cohort and 0·86 (0·82-0·89) in the external validation cohort for 1-year major bleeding. INTERPRETATION: A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making. FUNDING: None.


Subject(s)
Acute Coronary Syndrome/complications , Datasets as Topic , Machine Learning , Mortality , Postoperative Complications , Adult , Clinical Decision-Making , Female , Hemorrhage/etiology , Humans , Male
13.
Front Cell Dev Biol ; 8: 334, 2020.
Article in English | MEDLINE | ID: mdl-32671058

ABSTRACT

During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.

14.
Int J Mol Sci ; 21(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188076

ABSTRACT

The pursuit for effective strategies inhibiting the amyloidogenic process in neurodegenerative disorders, such as Alzheimer's disease (AD), remains one of the main unsolved issues, and only a few drugs have demonstrated to delay the degeneration of the cognitive system. Moreover, most therapies induce severe side effects and are not effective at all stages of the illness. The need to find novel and reliable drugs appears therefore of primary importance. In this context, natural compounds have shown interesting beneficial effects on the onset and progression of neurodegenerative diseases, exhibiting a great inhibitory activity on the formation of amyloid aggregates and proving to be effective in many preclinical and clinical studies. However, their inhibitory mechanism is still unclear. In this work, ensemble docking and molecular dynamics simulations on S-shaped Aß42 fibrils have been carried out to evaluate the influence of several natural compounds on amyloid conformational behaviour. A deep understanding of the interaction mechanisms between natural compounds and Aß aggregates may play a key role to pave the way for design, discovery and optimization strategies toward an efficient destabilization of toxic amyloid assemblies.


Subject(s)
Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Alzheimer Disease/drug therapy , Amyloid/chemistry , Amyloid/drug effects , Amyloid beta-Peptides/drug effects , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/drug effects , Protein Conformation
15.
J Mol Graph Model ; 96: 107518, 2020 05.
Article in English | MEDLINE | ID: mdl-31923804

ABSTRACT

Ultrasound-based technologies are widely adopted in the clinical practice. Recently, the ultrasound stable cavitation has been proposed as a strategy to destabilize amyloid aggregates in Alzheimer disease. However, the molecular mechanisms driving ultrasound-induced amyloid destabilization are not fully clarified yet. Here, molecular dynamics is applied to investigate in silico the conformational dynamics induced by ultrasound stable cavitation on S-shaped Aß1-42 amyloid fibrils, which has been highlighted as a more stable architecture with respect to U-shaped Aß1-42. The findings of the study suggested that ultrasound exposure could affect S-shaped aggregates folding dynamics and kinetics, with a marked dependence on the fibril polymorphism. More in detail, here we suggest that the molecular mechanisms of amyloid destabilization could be driven by residues not involved in defined secondary structures, with unstructured amyloid regions acting as source of instability for the overall fibril by opening a nanofracture able to propagate into the protein, until the complete unfolding of the molecular assembly takes place.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid , Humans , Molecular Dynamics Simulation , Peptide Fragments , Ultrasonic Waves
16.
Front Neurosci ; 13: 419, 2019.
Article in English | MEDLINE | ID: mdl-31156358

ABSTRACT

Much evidence suggests a protective role of high-density lipoprotein (HDL) and its major apolipoprotein apoA-I, in Alzheimer's disease (AD). The biogenesis of nascent HDL derived from a first lipidation of apoA-I, which is synthesized by the liver and intestine but not in the brain, in a process mediated by ABCA1. The maturation of nascent HDL in mature spherical HDL is due to a subsequent lipidation step, LCAT-mediated cholesterol esterification, and the change of apoA-I conformation. Therefore, different subclasses of apoA-I-HDL simultaneously exist in the blood circulation. Here, we investigated if and how the lipidation state affects the ability of apoA-I-HDL to target and modulate the cerebral ß-amyloid (Aß) content from the periphery, that is thus far unclear. In particular, different subclasses of HDL, each with different apoA-I lipidation state, were purified from human plasma and their ability to cross the blood-brain barrier (BBB), to interact with Aß aggregates, and to affect Aß efflux across the BBB was assessed in vitro using a transwell system. The results showed that discoidal HDL displayed a superior capability to promote Aß efflux in vitro (9 × 10-5 cm/min), when compared to apoA-I in other lipidation states. In particular, no effect on Aß efflux was detected when apoA-I was in mature spherical HDL, suggesting that apoA-I conformation, and lipidation could play a role in Aß clearance from the brain. Finally, when apoA-I folded its structure in discoidal HDL, rather than in spherical ones, it was able to cross the BBB in vitro and strongly destabilize the conformation of Aß fibrils by decreasing the order of the fibril structure (-24%) and the ß-sheet content (-14%). These data suggest that the extent of apoA-I lipidation, and consequently its conformation, may represent crucial features that could exert their protective role in AD pathogenesis.

17.
PLoS One ; 13(9): e0200769, 2018.
Article in English | MEDLINE | ID: mdl-30192754

ABSTRACT

TP53 is the most mutated gene in all cancers. The mutant protein also accumulates in cells. The high frequency of p53 mutations makes the protein a promising target for anti-cancer therapy. Only a few molecules have been found, using in vitro screening, to reactivate the mutant protein. APR-246 is currently the most successful mutant p53 activator, which reactivates the transcriptional activity of p53 by covalently binding to C124 of the protein. We have recently created in silico models of G245S-mp53 in its apo and DNA-bound forms. In this paper we further report on our in silico screening for potential activators of G245S-mp53. We filtered the ZINC15 database (13 million compounds) to only include drug-like molecules with moderate to standard reactivity. Our filtered database of 130,000 compounds was screened using the DOCKTITE protocol in the Molecular Operating Environment software. We performed covalent docking at C124 of G245S-mp53 to identify potential activators of the mutant protein. The docked compounds were ranked using a consensus scoring approach. We also used ADMET Predictor™ to predict pharmacokinetics and the possible toxicities of the compounds. Our screening procedure has identified compounds, mostly thiosemicarbazones and halo-carbonyls, with the best potential as G245S-mp53 activators, which are described in this work. Based on its binding scores and ADMET risk score, compound 2 is likely to have the best potential as a G245S-mp53 activator compared to the other top hits.


Subject(s)
Models, Genetic , Mutation , Tumor Suppressor Protein p53/genetics , Computer Simulation , Humans , Neoplasms/genetics
18.
Int J Mol Sci ; 19(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042316

ABSTRACT

The protein ataxin-3 contains a polyglutamine stretch that triggers amyloid aggregation when it is expanded beyond a critical threshold. This results in the onset of the spinocerebellar ataxia type 3. The protein consists of the globular N-terminal Josephin domain and a disordered C-terminal tail where the polyglutamine stretch is located. Expanded ataxin-3 aggregates via a two-stage mechanism: first, Josephin domain self-association, then polyQ fibrillation. This highlights the intrinsic amyloidogenic potential of Josephin domain. Therefore, much effort has been put into investigating its aggregation mechanism(s). A key issue regards the conformational requirements for triggering amyloid aggregation, as it is believed that, generally, misfolding should precede aggregation. Here, we have assayed the effect of 2,2,2-trifluoroethanol, a co-solvent capable of stabilizing secondary structures, especially α-helices. By combining biophysical methods and molecular dynamics, we demonstrated that both secondary and tertiary JD structures are virtually unchanged in the presence of up to 5% 2,2,2-trifluoroethanol. Despite the preservation of JD structure, 1% of 2,2,2-trifluoroethanol suffices to exacerbate the intrinsic aggregation propensity of this domain, by slightly decreasing its conformational stability. These results indicate that in the case of JD, conformational fluctuations might suffice to promote a transition towards an aggregated state without the need for extensive unfolding, and highlights the important role played by the environment on the aggregation of this globular domain.


Subject(s)
Amyloid/drug effects , Ataxin-3/metabolism , Protein Aggregates/drug effects , Repressor Proteins/metabolism , Trifluoroethanol/pharmacology , Ataxin-3/chemistry , Circular Dichroism , Humans , Molecular Conformation , Molecular Dynamics Simulation , Peptides/metabolism , Protein Conformation/drug effects , Protein Domains/drug effects , Protein Stability/drug effects , Protein Structure, Secondary/drug effects , Protein Structure, Tertiary/drug effects , Repressor Proteins/chemistry
19.
PLoS One ; 12(10): e0186816, 2017.
Article in English | MEDLINE | ID: mdl-29088239

ABSTRACT

The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.


Subject(s)
Molecular Dynamics Simulation , Peptides/chemistry , Polyethyleneimine/chemistry , Polylysine/chemistry , RNA, Small Interfering/chemistry , Cations/chemistry , Chemical Phenomena , Gene Transfer Techniques , Molecular Structure , Molecular Weight , Nucleic Acid Conformation , Polyamines , Polyelectrolytes , RNA Interference , RNA, Small Interfering/genetics , Thermodynamics
20.
Molecules ; 22(8)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28813011

ABSTRACT

The transcription factor p53 is a potent tumor suppressor dubbed as the "guardian of the genome" because of its ability to orchestrate protective biological outputs in response to a variety of oncogenic stresses. Mutation and thus inactivation of p53 can be found in 50% of human tumors. The majority are missense mutations located in the DNA binding region. Among them, G245S is known to be a structural hotspot mutation. To understand the behaviors and differences between the wild-type and mutant, both a dimer of the wild type p53 (wt-p53) and its G245S mutant (G245S-mp53), complexed with DNA, were simulated using molecular dynamics for more than 1 µs. wt-p53 and G245S-mp53 apo monomers were simulated for 1 µs as well. Conformational analyses and binding energy evaluations performed underline important differences and therefore provide insights to understand the G245S-mp53 loss of function. Our results indicate that the G245S mutation destabilizes several structural regions in the protein that are crucial for DNA binding when found in its apo form and highlight differences in the mutant-DNA complex structure compared to the wt protein. These findings not only provide means that can be applied to other p53 mutants but also serve as structural basis for further studies aimed at the development of cancer therapies based on restoring the function of p53.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/chemistry , Apoptosis/genetics , Cell Line, Tumor , DNA/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Molecular Dynamics Simulation , Point Mutation/genetics , Protein Binding , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...