Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 292(5524): 2037-41, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-11358995

ABSTRACT

Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.

2.
Biophys J ; 71(5): 2680-91, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8913605

ABSTRACT

We show that the lipophilic, cationic fluorescent dyes R18 and Dil translocate from one monolayer of a phospholipid bilayer membrane to the other in a concentration and voltage-dependent manner. When the probes were incorporated into voltage-clamped planar membranes and potentials were applied, displacement currents resulted. The charged probes sensed a large fraction of the applied field. When these probes were added to only one monolayer, displacement currents were symmetrical around 0 mV, indicating that the probes distributed equally between the two monolayers. Charge translocation required that the bilayer be fluid. When membranes were in a condensed gel phase, displacement currents were not observed; raising the temperature to above the gel-liquid crystalline transition restored the currents. Translocation of R18 was also shown by fluorescence measurements. When R18 was in the bilayer at high, self-quenching concentrations, voltage pulses led to voltage-dependent fluorescence changes. The kinetics of the fluorescence changes and charge translocations correlated. Adding the quencher I- to one aqueous phase caused fluorescence to decrease or increase when voltage moved R18 toward or away from the quencher at low, nonquenching concentrations of R18. In contrast to R18, Dil incorporated into bilayers was a carrier fo I-, and hence I- altered Dil currents. Voltage-driven translocations allow R18 and Dil to be used to probe membrane potential changes.


Subject(s)
Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Membrane Potentials , Rhodamines/chemistry , Iodides/chemistry , Lipid Bilayers , Membrane Lipids/chemistry , Membranes, Artificial , Phosphatidylcholines/chemistry , Solubility , Spectrometry, Fluorescence
3.
Article in English | MEDLINE | ID: mdl-7545041

ABSTRACT

The channel-forming colicins are plasmid-encoded bacteriocins that kill E. coli and related cells and whose mode of action is of interest in related problems of protein import and toxicology. Colicins parasitize metabolite receptors in the outer membrane and translocate across the periplasm with the aid of the Tol or Ton protein systems. X-ray structure data for the channel domain and colicin are available. Residues have been identified that affect the channel ion selectivity and particular helices implicated in channel structure and in conformational changes required for binding or insertion of the channel into the membrane. Unique aspects of the colicin channel system are the involvement of protein import in the gating process, the existence of multiple open and closed states, and the existence and action of an immunity protein that involves specific intramembrane helix-helix interactions with transmembrane helices of the colicin channel-forming domains.


Subject(s)
Colicins/chemistry , Ion Channels/chemistry , Amino Acid Sequence , Biological Transport , Cell Membrane/metabolism , Colicins/metabolism , Crystallography, X-Ray , Ion Channels/metabolism , Molecular Sequence Data , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...