Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37512291

ABSTRACT

In this study, a superelastic Ti-18Zr-15Nb (at. %) alloy was subjected to thermomechanical treatment, including cold rotary forging, intermediate annealing, cold drawing, post-deformation annealing, and additional low-temperature aging. As a result of intermediate annealing, two structures of ß-phase were obtained: a fine-grained structure (d ≈ 3 µm) and a coarse-grained structure (d ≈ 11 µm). Cold drawing promotes grain elongation in the drawing direction; in a fine-grained state, grains form with a size of 4 × 2 µm, and in a coarse-grained state, they grow with a size of 16 × 6 µm. Post-deformation annealing (PDA) at 550 °C for 30 min leads to grain sizes of 5 µm and 3 µm, respectively. After PDA at 550 °C (30 min) in the fine-grained state, the wire exhibits high tensile strength (UTS = 624 MPa), highest elongation to failure (δ ≥ 8%), and maximum difference between the dislocation and transformation yield stresses, as well as the highest superelastic recovery strain (εrSE ≥ 3.3%) and total elastic + superelastic recovery strain (εrel+SE ≥ 5.4%). Additional low-temperature aging at 300 °C for 30-180 min leads to ω-phase formation, alloy hardening, embrittlement, and a significant decrease in superelastic recovery strain.

2.
Materials (Basel) ; 16(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837384

ABSTRACT

The Ti-18Zr-15Nb shape memory alloys are a new material for medical implants. The regularities of phase transformations during heating of this alloy in the coarse-grained quenched state and the nanostructured state after high-pressure torsion have been studied. The specimens in quenched state (Q) and HPT state were annealed at 300-550 °C for 0.5, 3, and 12 h. The α-phase formation in Ti-18Zr-15Nb alloy occurs by C-shaped kinetics with a pronounced peak near 400-450 °C for Q state and near 350-450 °C for HPT state, and stops or slows down at higher and lower annealing temperatures. The formation of a nanostructured state in the Ti-18Zr-15Nb alloy as a result of HPT suppresses the ß→ω phase transformation during low-temperature annealing (300-350 °C), but activates the ß→α phase transformation. In the Q-state the α-phase during annealing at 450-500 °C is formed in the form of plates with a length of tens of microns. The α-phase formed during annealing of nanostructured specimens has the appearance of nanosized particle-grains of predominantly equiaxed shape, distributed between the nanograins of ß-phase. The changes in microhardness during annealing of Q-specimens correlate with changes in phase composition during aging.

3.
Article in English | MEDLINE | ID: mdl-26067041

ABSTRACT

For biomedical applications, narrow temperature range and high sensor accuracy requirements define the need for high temperature sensitivity. Wireless SAW sensors connected to antennas need a reference element to account for changes in electromagnetic coupling between the transmitter and receiver antennas. A pair of sensors with different temperature sensitivities may serve as a self-referenced sensor assembly. This justifies the need for materials with useful SAW resonator properties and with the largest difference between temperature coefficients of frequency (TCF) for a resonator pair on a single substrate. We have identified several cuts of quartz having useful properties with a TCF difference up to 140 ppm/°C for a pair of resonators on a single substrate. As a rule, placing such resonators on a single substrate requires their rotation by up to 90° relative to each other. The limited range of cuts presents a unique opportunity to place both resonators along the X+90° direction with one resonator using Bleustein-Gulyaev-Shimizu (BGS) waves (with electrodes placed along the x-axis) and the other one (with electrodes inclined by about ±10° to the x-axis) using quasi-Rayleigh waves. These cuts are close to the 70°Y cut where a high TCF difference is reached together with acceptable characteristics of the resonators. Resonators were designed for all useful cuts (including the 70°Y cut) and tested. The use of different periods in reflectors and interdigital transducer (IDT) together with individual choice of gaps between reflectors and IDT meant achieving low spurious content in resonator responses. The quality factors reached values up to 3500 at central frequencies around 915 MHz for both BGS and quasi-Rayleigh types of waves. The measured difference of the TCF is about 138 ppm/°C on 70°Y cut that is close to the calculated value.

SELECTION OF CITATIONS
SEARCH DETAIL
...