Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 127(19): 194301, 2007 Nov 21.
Article in English | MEDLINE | ID: mdl-18035877

ABSTRACT

Dissociative recombination (DR) of the water cluster ions H(+)(H(2)O)(3) and D(+)(D(2)O)(3) with electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). For the first time, absolute DR cross sections have been measured for H(+)(H(2)O)(3) in the energy range of 0.001-0.8 eV, and relative cross sections have been measured for D(+)(D(2)O)(3) in the energy range of 0.001-1.0 eV. The DR cross sections for H(+)(H(2)O)(3) are larger than previously observed for H(+)(H(2)O)(n) (n=1,2), which is in agreement with the previously observed trend indicating that the DR rate coefficient increases with size of the water cluster ion. Branching ratios have been determined for the dominating product channels. Dissociative recombination of H(+)(H(2)O)(3) mainly results in the formation of 3H(2)O+H (probability of 0.95+/-0.05) and with a possible minor channel resulting in 2H(2)O+OH+H(2) (0.05+/-0.05). The dominating channels for DR of D(+)(D(2)O)(3) are 3D(2)O+D (0.88+/-0.03) and 2D(2)O+OD+D(2) (0.09+/-0.02). The branching ratios are comparable to earlier DR results for H(+)(H(2)O)(2) and D(+)(D(2)O)(2), which gave 2X(2)O+X (X=H,D) with a probability of over 0.9.

2.
J Chem Phys ; 120(16): 7391-9, 2004 Apr 22.
Article in English | MEDLINE | ID: mdl-15267649

ABSTRACT

The dissociative recombination (DR) process of NH4+ and ND4+ molecular ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for DR of NH4+ and ND4+ in the collision energy range 0.001-1 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 2000 K are calculated from the experimental data. The absolute cross section for NH4+ agrees well with earlier work and is about a factor of 2 larger than the cross section for ND4+. The dissociative recombination of NH4+ is dominated by the product channels NH3+H (0.85+/-0.04) and NH2+2H (0.13+/-0.01), while the DR of ND4+ mainly results in ND3+D (0.94+/-0.03). Ab initio direct dynamics simulations, based on the assumption that the dissociation dynamics is governed by the neutral ground-state potential energy surface, suggest that the primary product formed in the DR process is NH3+H. The ejection of the H atom is direct and leaves the NH3 molecule highly vibrationally excited. A fraction of the excited ammonia molecules may subsequently undergo secondary fragmentation forming NH2+H. It is concluded that the model results are consistent with gross features of the experimental results, including the sensitivity of the branching ratio for the three-body channel NH2+2H to isotopic exchange.

3.
Phys Rev Lett ; 85(26 Pt 1): 5555-8, 2000 Dec 25.
Article in English | MEDLINE | ID: mdl-11136045

ABSTRACT

To better understand the propensity for the three-body breakup in dissociative recombination (DR) of dihydrides ( H(3)(+), NH(2)(+), CH(2)(+), and H(2)O(+)), we undertook a study of the dynamics of this process. A study of DR of H(2)O(+) to give O + H + H was carried out at the CRYRING Heavy-Ion Storage Ring in Stockholm. With the stored beam energy of 4.5 MeV, we separated the O signal from the H signals with a differential absorber, thus reducing the problem to a sum of two two-body problems. Results included (1) the ratio of O((3)P) to O((1)D) product, (2) the distribution of recoil-kinetic energy between the two hydrogen atoms, (3) the angular distribution between the hydrogen atoms in the O((3)P) channel and in the O((1)D) channel.

SELECTION OF CITATIONS
SEARCH DETAIL
...