Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Mol Psychiatry ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811691

ABSTRACT

Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.

2.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38052102

ABSTRACT

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Fertility , Genome-Wide Association Study , Twinning, Dizygotic , Animals , Female , Humans , Pregnancy , Carrier Proteins/genetics , Fertility/genetics , Hormones , Proteins/genetics , United States , Zebrafish/genetics
4.
Psychiatry Res ; 326: 115343, 2023 08.
Article in English | MEDLINE | ID: mdl-37473490

ABSTRACT

Anxiety disorders are a group of prevalent and heritable neuropsychiatric diseases. We previously conducted a genome-wide association study (GWAS) which identified genomic loci associated with anxiety; however, the biological consequences underlying the genetic associations are largely unknown. Integrating GWAS and functional genomic data may improve our understanding of the genetic effects on intermediate molecular phenotypes such as gene expression. This can provide an opportunity for the discovery of drug targets for anxiety via drug repurposing. We used the GWAS summary statistics to determine putative causal genes for anxiety using MAGMA and colocalization analyses. A transcriptome-wide association study was conducted to identify genes with differential genetically regulated levels of gene expression in human brain tissue. The genes were integrated with a large drug-gene expression database (Connectivity Map), discovering compounds that are predicted to "normalise" anxiety-associated expression changes. The study identified 64 putative causal genes associated with anxiety (35 genes upregulated; 29 genes downregulated). Drug mechanisms adrenergic receptor agonists, sigma receptor agonists, and glutamate receptor agonists gene targets were enriched in anxiety-associated genetic signal and exhibited an opposing effect on the anxiety-associated gene expression signature. The significance of the project demonstrated genetic links for novel drug candidates to potentially advance anxiety therapeutics.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Drug Repositioning , Transcriptome , Anxiety/drug therapy , Anxiety/genetics , Anxiety Disorders/drug therapy , Anxiety Disorders/genetics , Polymorphism, Single Nucleotide
5.
medRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37461564

ABSTRACT

Diagnostic criteria for major depressive disorder allow for heterogeneous symptom profiles but genetic analysis of major depressive symptoms has the potential to identify clinical and aetiological subtypes. There are several challenges to integrating symptom data from genetically-informative cohorts, such as sample size differences between clinical and community cohorts and various patterns of missing data. We conducted genome-wide association studies of major depressive symptoms in three clinical cohorts that were enriched for affected participants (Psychiatric Genomics Consortium, Australian Genetics of Depression Study, Generation Scotland) and three community cohorts (Avon Longitudinal Study of Parents and Children, Estonian Biobank, and UK Biobank). We fit a series of confirmatory factor models with factors that accounted for how symptom data was sampled and then compared alternative models with different symptom factors. The best fitting model had a distinct factor for Appetite/Weight symptoms and an additional measurement factor that accounted for missing data patterns in the community cohorts (use of Depression and Anhedonia as gating symptoms). The results show the importance of assessing the directionality of symptoms (such as hypersomnia versus insomnia) and of accounting for study and measurement design when meta-analysing genetic association data.

6.
Psychiatry Res ; 321: 115101, 2023 03.
Article in English | MEDLINE | ID: mdl-36774750

ABSTRACT

BACKGROUND: Traumatic experiences are associated with increased risk for major depressive disorder (MDD). This study sought to determine the extent that trauma exposure, depression polygenic risk scores (PRS), and their interaction are associated with MDD and individual depression symptoms. METHODS: Data from 102,182 individuals from the large-scale UK Biobank population cohort was analysed. A series of regression analyses were conducted to estimate the association between trauma, depression PRS and 1) current depression, 2) lifetime MDD case-control status, 3) nine individual current depressive symptoms, and 4) thirteen individual symptoms experienced during a major depressive episode. Additive and multiplicative PRS-by-trauma interactions were also assessed. RESULTS: Trauma and depression PRS were significantly associated with both current depression and lifetime MDD. A positive, additive interaction effect was observed on depression, but multiplicative interactions were not significant. Trauma exposure and depression PRS were associated with specific patterns of depression symptoms; Trauma was associated with low self-esteem, suicidal ideation, and atypical (but not typical) neurovegetative symptoms. Additive interaction effects were observed on six out of nine current depressive symptoms. CONCLUSIONS: Trauma exposure and genetic predisposition to depression may lead to particular symptomatology, which may contribute to the extreme clinical heterogeneity observed in individuals with major depression.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Depression , Genetic Predisposition to Disease , Risk Factors , Regression Analysis , Genome-Wide Association Study
7.
Transl Psychiatry ; 12(1): 489, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411281

ABSTRACT

Cannabis is among the most widely consumed psychoactive substances worldwide. Individual differences in cannabis use phenotypes can partly be explained by genetic differences. Technical and methodological advances have increased our understanding of the genetic aetiology of cannabis use. This narrative review discusses the genetic literature on cannabis use, covering twin, linkage, and candidate-gene studies, and the more recent genome-wide association studies (GWASs), as well as the interplay between genetic and environmental factors. Not only do we focus on the insights that these methods have provided on the genetic aetiology of cannabis use, but also on how they have helped to clarify the relationship between cannabis use and co-occurring traits, such as the use of other substances and mental health disorders. Twin studies have shown that cannabis use is moderately heritable, with higher heritability estimates for more severe phases of use. Linkage and candidate-gene studies have been largely unsuccessful, while GWASs so far only explain a small portion of the heritability. Dozens of genetic variants predictive of cannabis use have been identified, located in genes such as CADM2, FOXP2, and CHRNA2. Studies that applied multivariate methods (twin models, genetic correlation analysis, polygenic score analysis, genomic structural equation modelling, Mendelian randomisation) indicate that there is considerable genetic overlap between cannabis use and other traits (especially other substances and externalising disorders) and some evidence for causal relationships (most convincingly for schizophrenia). We end our review by discussing implications of these findings and suggestions for future work.


Subject(s)
Cannabis , Schizophrenia , Genome-Wide Association Study , Cannabis/adverse effects , Cannabis/genetics , Multifactorial Inheritance , Schizophrenia/genetics , Phenotype
8.
Nat Genet ; 54(10): 1457-1465, 2022 10.
Article in English | MEDLINE | ID: mdl-36138228

ABSTRACT

Genome-wide association studies have identified hundreds of robust genetic associations underlying psychiatric disorders and provided important biological insights into disease onset and progression. There is optimism that genetic findings will pave the way to precision psychiatry by facilitating the development of more effective treatments and the identification of groups of patients that these treatments should be targeted toward. However, there are several challenges that must be addressed before genetic findings can be translated into the clinic. In this Perspective, we highlight ten challenges for the field of psychiatric genetics, focused on the robust and generalizable detection of genetic risk factors, improved definition and assessment of psychopathology and achieving better clinical indicators. We discuss recent advancements in the field that will improve the explanatory and predictive power of genetic data and ultimately contribute to improving the management and treatment of patients with a psychiatric disorder.


Subject(s)
Mental Disorders , Psychiatry , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Mental Disorders/genetics
9.
Mol Psychiatry ; 27(11): 4419-4431, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35974141

ABSTRACT

Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes.


Subject(s)
Learning , Memory, Short-Term , Memory, Short-Term/physiology , Verbal Learning , Multifactorial Inheritance , Brain
10.
Neurobiol Aging ; 119: 127-135, 2022 11.
Article in English | MEDLINE | ID: mdl-35989212

ABSTRACT

Alzheimer's disease (AD) is predicted to affect 132 million people by 2050. Targeting modifiable lifestyle risk factors that are associated with an increased risk of AD could prevent a large proportion of dementia cases, allowing people to reach the end of their life dementia free. However, evidence obtained from the observational studies does not take into account how risk factors are correlated with one another, and whether they causally contribute to increased AD risk. In this study, we determine whether the relationship between previously speculated AD risk factors and AD susceptibility is consistent with causality using large-scale genetic data. We focus on educational attainment (EA), intelligence and household income which have been previously shown to be causally associated with AD. Using GWAS-by-subtraction and Multivariable Mendelian Randomization we show that of these, only the cognitive component of EA (intelligence) is independently causally associated with AD. This work has ramifications for the modifiability of lifestyle risk factors for AD.


Subject(s)
Alzheimer Disease , Mendelian Randomization Analysis , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Educational Status , Genome-Wide Association Study , Humans , Intelligence/genetics , Polymorphism, Single Nucleotide , Risk Factors
11.
Schizophr Bull ; 48(6): 1318-1326, 2022 11 18.
Article in English | MEDLINE | ID: mdl-35925031

ABSTRACT

BACKGROUND AND HYPOTHESIS: The nature of the robust association between cannabis use and schizophrenia remains undetermined. Plausible hypotheses explaining this relationship include the premise that cannabis use causes schizophrenia, increased liability for schizophrenia increases the risk of cannabis use initiation (eg, self-medication), or the bidirectional causal hypothesis where both factors play a role in the development of the other. Alternatively, factors that confound the relationship between schizophrenia and cannabis use may explain their association. Externalizing behaviors are related to both schizophrenia and cannabis use and may influence their relationship. STUDY DESIGN: This study aimed to evaluate whether externalizing behaviors influence the genetic relationship between cannabis use and schizophrenia. We conducted a multivariate genome-wide association analysis of 6 externalizing behaviors in order to construct a genetic latent factor of the externalizing spectrum. Genomic structural equation modeling was used to evaluate the influence of externalizing behaviors on the genetic relationship between cannabis use and schizophrenia. RESULTS: We found that externalizing behaviors partially explained the association between cannabis use and schizophrenia by up to 42%. CONCLUSIONS: This partial explanation of the association by externalizing behaviors suggests that there may be other unidentified confounding factors, alongside a possible direct association between schizophrenia and cannabis use. Future studies should aim to identify further confounding factors to accurately explain the relationship between cannabis use and schizophrenia.


Subject(s)
Cannabis , Marijuana Abuse , Schizophrenia , Humans , Schizophrenia/epidemiology , Schizophrenia/genetics , Genome-Wide Association Study , Risk Factors , Marijuana Abuse/epidemiology , Marijuana Abuse/genetics
12.
Biol Psychiatry ; 92(7): 583-591, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35525699

ABSTRACT

BACKGROUND: Global genetic correlation analysis has provided valuable insight into the shared genetic basis between psychiatric and substance use disorders. However, little is known about which regions disproportionately contribute to the global correlation. METHODS: We used Local Analysis of [co]Variant Annotation to calculate bivariate local genetic correlations across 2495 approximately equal-sized, semi-independent genomic regions for 20 psychiatric and substance use phenotypes. We performed a transcriptome-wide association study using expression weights from the prefrontal cortex to identify risk genes for each phenotype, followed by probabilistic fine-mapping to prioritize credible causal genes within each bivariate locus. RESULTS: We detected 80 significant (p < 2.08 × 10-6) bivariate local genetic correlations across 61 loci. The expression effect directions for risk genes within each bivariate locus were largely consistent with the local correlation coefficients, suggesting that genetically regulated gene expression may be used in the functional interpretation of local genetic correlations. Probabilistic fine-mapping identified several genes that may drive pleiotropic mechanisms for genetically correlated phenotypes. For example, we confirmed a local genetic correlation between schizophrenia and smoking behavior at 15q25 and prioritized PSMA4 as the most credible gene candidate underlying both phenotypes. CONCLUSIONS: Our study reveals previously unreported local bivariate genetic correlations between psychiatric and substance use phenotypes, which we fine-mapped to identify shared credible causal genes underlying genetically correlated phenotypes.


Subject(s)
Schizophrenia , Substance-Related Disorders , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , Substance-Related Disorders/genetics
13.
Eur J Hum Genet ; 30(5): 560-566, 2022 05.
Article in English | MEDLINE | ID: mdl-35217801

ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of risk loci for psychiatric and substance use phenotypes, however the biological consequences of these loci remain largely unknown. We performed a transcriptome-wide association study of 10 psychiatric disorders and 6 substance use phenotypes (GWAS sample size range, N = 9725-807,553) using expression quantitative trait loci data from 532 prefrontal cortex samples. We estimated the correlation of genetically regulated expression between phenotype pairs, and compared the results with the genetic correlations. We identified 393 genes with at least one significant phenotype association, comprising 458 significant associations across 16 phenotypes. Overall, the transcriptomic correlations for phenotype pairs were significantly higher than the respective genetic correlations. For example, attention deficit hyperactivity disorder and autism spectrum disorder, both childhood developmental disorders, had significantly higher transcriptomic correlation (r = 0.84) than genetic correlation (r = 0.35). Finally, we tested the enrichment of phenotype-associated genes in gene co-expression networks built from human prefrontal cortex samples. Phenotype-associated genes were enriched in multiple gene co-expression modules and the implicated modules contained genes involved in mRNA splicing and glutamatergic receptors, among others. Together, our results highlight the utility of gene expression data in the understanding of functional gene mechanisms underlying psychiatric disorders and substance use phenotypes.


Subject(s)
Autism Spectrum Disorder , Substance-Related Disorders , Autism Spectrum Disorder/genetics , Child , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Substance-Related Disorders/genetics , Transcriptome
14.
Neurol Genet ; 7(5): e622, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34532569

ABSTRACT

BACKGROUND AND OBJECTIVES: To integrate genome-wide association study data with tissue-specific gene expression information to identify coexpression networks, biological pathways, and drug repositioning candidates for Alzheimer disease. METHODS: We integrated genome-wide association summary statistics for Alzheimer disease with tissue-specific gene coexpression networks from brain tissue samples in the Genotype-Tissue Expression study. We identified gene coexpression networks enriched with genetic signals for Alzheimer disease and characterized the associated networks using biological pathway analysis. The disease-implicated modules were subsequently used as a molecular substrate for a computational drug repositioning analysis, in which we (1) imputed genetically regulated gene expression within Alzheimer disease implicated modules; (2) integrated the imputed gene expression levels with drug-gene signatures from the connectivity map to identify compounds that normalize dysregulated gene expression underlying Alzheimer disease; and (3) prioritized drug compounds and mechanisms of action based on the extent to which they normalize dysregulated expression signatures. RESULTS: Genetic factors for Alzheimer disease are enriched in brain gene coexpression networks involved in the immune response. Computational drug repositioning analyses of expression changes within the disease-associated networks retrieved known Alzheimer disease drugs (e.g., memantine) as well as biologically meaningful drug categories (e.g., glutamate receptor antagonists). DISCUSSION: Our results improve the biological interpretation of genetic data for Alzheimer disease and provide a list of potential antidementia drug repositioning candidates for which the efficacy should be investigated in functional validation studies.

15.
Front Psychiatry ; 12: 704276, 2021.
Article in English | MEDLINE | ID: mdl-34366936

ABSTRACT

Introduction: Cocaine users often present with repetitive events of cocaine-associated chest pain (CACP), clinically resembling acute coronary syndromes. The aim of the study is to describe the specific risk factors for CACP. Method: Cocaine users (n = 316) were recruited for a multicenter cross-sectional study. Lifetime CACP history, sociodemographic factors, and lifetime use of cocaine and other substances were assessed. Thirty single nucleotide polymorphisms (SNPs) of NOS3, ROCK2, EDN1, GUCY1A3, and ALDH2 genes, suggested by the literature on coronary spasms, were selected. The associations with CACP history were tested using the chi-square test, Student's t-test and logistic regression. Results: Among the 316 subjects [78.5% men, mean age 37.5 years, (standard-deviation ±8.7)], 190 (60.1%) were daily cocaine users and 103 (32.6%) reported a lifetime CACP history. Among those with a lifetime CACP history, the median was 10 events per individual. In multivariate analysis, lifetime CACP history was associated with daily cocaine use [odds-ratio (OR) 3.24; 95% confidence intervals (1.29-9.33)], rapid route of cocaine use [OR 2.33 (1.20-4.64) vs. intranasal use], and lifetime amphetamine use [daily amphetamine use: OR 2.80 (1.25-6.32) and non-daily amphetamine use: OR 2.14 (1.15-4.04) vs. never used]. Patients with lifetime opioid maintenance treatment (OMT) reported significantly less lifetime CACP history [OR 0.35 (0.16-0.76)]. None of the selected SNPs was associated with CACP history after multiple testing corrections. Conclusions: Clinical variables describing the intensity of stimulant use were positively associated with lifetime CACP history, while OMT was negatively associated with it. Specific harm reduction strategies can target these risk factors.

16.
Nat Hum Behav ; 5(10): 1432-1442, 2021 10.
Article in English | MEDLINE | ID: mdl-33859377

ABSTRACT

Depression and anxiety are highly prevalent and comorbid psychiatric traits that cause considerable burden worldwide. Here we use factor analysis and genomic structural equation modelling to investigate the genetic factor structure underlying 28 items assessing depression, anxiety and neuroticism, a closely related personality trait. Symptoms of depression and anxiety loaded on two distinct, although highly genetically correlated factors, and neuroticism items were partitioned between them. We used this factor structure to conduct genome-wide association analyses on latent factors of depressive symptoms (89 independent variants, 61 genomic loci) and anxiety symptoms (102 variants, 73 loci) in the UK Biobank. Of these associated variants, 72% and 78%, respectively, replicated in an independent cohort of approximately 1.9 million individuals with self-reported diagnosis of depression and anxiety. We use these results to characterize shared and trait-specific genetic associations. Our findings provide insight into the genetic architecture of depression and anxiety and comorbidity between them.


Subject(s)
Anxiety , Behavioral Symptoms , Depression , Neuroticism/physiology , Anxiety/diagnosis , Anxiety/epidemiology , Anxiety/genetics , Behavioral Symptoms/diagnosis , Behavioral Symptoms/psychology , Comorbidity , Depression/diagnosis , Depression/epidemiology , Depression/genetics , Factor Analysis, Statistical , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Latent Class Analysis , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data
17.
Nat Hum Behav ; 5(8): 1065-1073, 2021 08.
Article in English | MEDLINE | ID: mdl-33686200

ABSTRACT

Epidemiological studies show high comorbidity between different mental health problems, indicating that individuals with a diagnosis of one disorder are more likely to develop other mental health problems. Genetic studies reveal substantial sharing of genetic factors across mental health traits. However, mental health is also genetically correlated with socio-economic status (SES), and it is therefore important to investigate and disentangle the genetic relationship between mental health and SES. We used summary statistics from large genome-wide association studies (average N ~ 160,000) to estimate the genetic overlap across nine psychiatric disorders and seven substance use traits and explored the genetic influence of three different indicators of SES. Using genomic structural equation modelling, we show significant changes in patterns of genetic correlations after partialling out SES-associated genetic variation. Our approach allows the separation of disease-specific genetic variation and genetic variation shared with SES, thereby improving our understanding of the genetic architecture of mental health.


Subject(s)
Educational Status , Income , Mental Disorders/genetics , Mental Health , Social Class , Substance-Related Disorders/genetics , Alcohol Drinking/genetics , Anorexia Nervosa/genetics , Anxiety Disorders/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Latent Class Analysis , Models, Genetic , Obsessive-Compulsive Disorder/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Smoking/genetics , Smoking Cessation , Tourette Syndrome/genetics
18.
Addict Biol ; 26(6): e13015, 2021 11.
Article in English | MEDLINE | ID: mdl-33604983

ABSTRACT

Risky behaviors, such as substance use and unprotected sex, are associated with various physical and mental health problems. Recent genome-wide association studies indicated that variation in the cell adhesion molecule 2 (CADM2) gene plays a role in risky behaviors and self-control. In this phenome-wide scan for risky behavior, it was tested if underlying common vulnerability could be (partly) explained by pleiotropic effects of this gene and how large the effects were. Single nucleotide polymorphism (SNP)-level and gene-level association tests within four samples (25 and Up, Spit for Science, Netherlands Twin Register, and UK Biobank and meta-analyses over all samples (combined sample of 362,018 participants) were conducted to test associations between CADM2, substance- and sex-related risk behaviors, and various measures related to self-control. We found significant associations between the CADM2 gene, various risky behaviors, and different measures of self-control. The largest effect sizes were found for cannabis use, sensation seeking, and disinhibition. Effect sizes ranged from 0.01% to 0.26% for single top SNPs and from 0.07% to 3.02% for independent top SNPs together, with sufficient power observed only in the larger samples and meta-analyses. In the largest cohort, we found indications that risk-taking proneness mediated the association between CADM2 and latent factors for lifetime smoking and regular alcohol use. This study extends earlier findings that CADM2 plays a role in risky behaviors and self-control. It also provides insight into gene-level effect sizes and demonstrates the feasibility of testing mediation. These findings present a good starting point for investigating biological etiological pathways underlying risky behaviors.


Subject(s)
Cell Adhesion Molecules/genetics , Risk-Taking , Self-Control , Sexual Behavior , Substance-Related Disorders/genetics , Adult , Alcohol Drinking/genetics , Female , Genetic Association Studies , Humans , Male , Netherlands , Polymorphism, Single Nucleotide , Smoking/genetics , Sociodemographic Factors
19.
Bioinformatics ; 37(16): 2245-2249, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33624746

ABSTRACT

MOTIVATION: Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with human traits and diseases, but the exact causal genes are largely unknown. Common genetic risk variants are enriched in non-protein-coding regions of the genome and often affect gene expression (expression quantitative trait loci, eQTL) in a tissue-specific manner. To address this challenge, we developed a methodological framework, E-MAGMA, which converts genome-wide association summary statistics into gene-level statistics by assigning risk variants to their putative genes based on tissue-specific eQTL information. RESULTS: We compared E-MAGMA to three eQTL informed gene-based approaches using simulated phenotype data. Phenotypes were simulated based on eQTL reference data using GCTA for all genes with at least one eQTL at chromosome 1. We performed 10 simulations per gene. The eQTL-h2 (i.e. the proportion of variation explained by the eQTLs) was set at 1%, 2% and 5%. We found E-MAGMA outperforms other gene-based approaches across a range of simulated parameters (e.g. the number of identified causal genes). When applied to genome-wide association summary statistics for five neuropsychiatric disorders, E-MAGMA identified more putative candidate causal genes compared to other eQTL-based approaches. By integrating tissue-specific eQTL information, these results show E-MAGMA will help to identify novel candidate causal genes from genome-wide association summary statistics and thereby improve the understanding of the biological basis of complex disorders. AVAILABILITY AND IMPLEMENTATION: A tutorial and input files are made available in a github repository: https://github.com/eskederks/eMAGMA-tutorial. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

20.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 162-172, 2021 04.
Article in English | MEDLINE | ID: mdl-33369091

ABSTRACT

Genome-wide association studies have identified multiple genetic risk factors underlying susceptibility to substance use, however, the functional genes and biological mechanisms remain poorly understood. The discovery and characterization of risk genes can be facilitated by the integration of genome-wide association data and gene expression data across biologically relevant tissues and/or cell types to identify genes whose expression is altered by DNA sequence variation (expression quantitative trait loci; eQTLs). The integration of gene expression data can be extended to the study of genetic co-expression, under the biologically valid assumption that genes form co-expression networks to influence the manifestation of a disease or trait. Here, we integrate genome-wide association data with gene expression data from 13 brain tissues to identify candidate risk genes for 8 substance use phenotypes. We then test for the enrichment of candidate risk genes within tissue-specific gene co-expression networks to identify modules (or groups) of functionally related genes whose dysregulation is associated with variation in substance use. We identified eight gene modules in brain that were enriched with gene-based association signals for substance use phenotypes. For example, a single module of 40 co-expressed genes was enriched with gene-based associations for drinks per week and biological pathways involved in GABA synthesis, release, reuptake and degradation. Our study demonstrates the utility of eQTL and gene co-expression analysis to uncover novel biological mechanisms for substance use traits.


Subject(s)
Gene Regulatory Networks , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Substance-Related Disorders/genetics , Gene Expression Profiling , Genetic Testing , Genome-Wide Association Study , Humans , Phenotype , Substance-Related Disorders/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...