Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Leukemia ; 29(5): 1133-42, 2015 May.
Article in English | MEDLINE | ID: mdl-25371178

ABSTRACT

Mutations or deletions in TP53 or ATM are well-known determinants of poor prognosis in chronic lymphocytic leukemia (CLL), but only account for approximately 40% of chemo-resistant patients. Genome-wide sequencing has uncovered novel mutations in the splicing factor sf3b1, that were in part associated with ATM aberrations, suggesting functional synergy. We first performed detailed genetic analyses in a CLL cohort (n=110) containing ATM, SF3B1 and TP53 gene defects. Next, we applied a newly developed multiplex assay for p53/ATM target gene induction and measured apoptotic responses to DNA damage. Interestingly, SF3B1 mutated samples without concurrent ATM and TP53 aberrations (sole SF3B1) displayed partially defective ATM/p53 transcriptional and apoptotic responses to various DNA-damaging regimens. In contrast, NOTCH1 or K/N-RAS mutated CLL displayed normal responses in p53/ATM target gene induction and apoptosis. In sole SF3B1 mutated cases, ATM kinase function remained intact, and γH2AX formation, a marker for DNA damage, was increased at baseline and upon irradiation. Our data demonstrate that single mutations in sf3b1 are associated with increased DNA damage and/or an aberrant response to DNA damage. Together, our observations may offer an explanation for the poor prognosis associated with SF3B1 mutations.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Phosphoproteins/genetics , Ribonucleoprotein, U2 Small Nuclear/genetics , Apoptosis , Ataxia Telangiectasia Mutated Proteins/metabolism , Cohort Studies , DNA Damage , DNA Mutational Analysis , Doxorubicin/pharmacology , Flow Cytometry , Gene Deletion , Genome, Human , Histones/metabolism , Humans , Imidazoles/pharmacology , Piperazines/pharmacology , Prognosis , RNA Splicing Factors , Receptor, Notch1/genetics , Tumor Suppressor Protein p53/genetics , Vidarabine/analogs & derivatives , Vidarabine/pharmacology
2.
Cell Death Differ ; 14(11): 1958-67, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17703234

ABSTRACT

Seliciclib (R-roscovitine) is a cyclin-dependent kinase inhibitor in clinical development. It triggers apoptosis by inhibiting de novo transcription of the short-lived Mcl-1 protein, but it is unknown how this leads to Bax/Bak activation that is required for most forms of cell death. Here, we studied the effects of seliciclib in B-cell chronic lymphocytic leukemia (B-CLL), a malignancy with aberrant expression of apoptosis regulators. Although seliciclib-induced Mcl-1 degradation within 4 h, Bax/Bak activation occurred between 16 and 20 h. During this period, no transcriptional changes in apoptosis-related genes occurred. In untreated cells, prosurvival Mcl-1 was engaged by the proapoptotic proteins Noxa and Bim. Upon drug treatment, Bim was quickly released. The contribution of Noxa and Bim as a specific mediator of seliciclib-induced apoptosis was demonstrated via RNAi. Significantly, 16 h after seliciclib treatment, there was accumulation of Bcl-2, Bim and Bax in the 'mitochondria-rich' insoluble fraction of the cell. This suggests that after Mcl-1 degradation, the remaining apoptosis neutralizing capacity of Bcl-2 is gradually overwhelmed, until Bax forms large multimeric pores in the mitochondria. These data demonstrate in primary leukemic cells hierarchical binding and crosstalk among Bcl-2 members, and suggest that their functional interdependence can be exploited therapeutically.


Subject(s)
Apoptosis , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Neoplasm Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Purines/pharmacology , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Cell Line, Tumor , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Membrane Proteins/metabolism , Middle Aged , Myeloid Cell Leukemia Sequence 1 Protein , Neoplasm Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , RNA Interference , Roscovitine , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...