Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Anal Chem ; 96(14): 5478-5488, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38529642

ABSTRACT

PubChem serves as a comprehensive repository, housing over 100 million unique chemical structures representing the breadth of our chemical knowledge across numerous fields including metabolism, pharmaceuticals, toxicology, cosmetics, agriculture, and many more. Rapid identification of these small molecules increasingly relies on electrospray ionization (ESI) paired with tandem mass spectrometry (MS/MS), particularly by comparison to genuine standard MS/MS data sets. Despite its widespread application, achieving consistency in MS/MS data across various analytical platforms remains an unaddressed concern. This study evaluated MS/MS data derived from one hundred molecular standards utilizing instruments from five manufacturers, inclusive of quadrupole time-of-flight (QTOF) and quadrupole orbitrap "exactive" (QE) mass spectrometers by Agilent (QTOF), Bruker (QTOF), SCIEX (QTOF), Waters (QTOF), and Thermo QE. We assessed fragment ion variations at multiple collisional energies (0, 10, 20, and 40 eV) using the cosine scoring algorithm for comparisons and the number of fragments observed. A parallel visual analysis of the MS/MS spectra across instruments was conducted, consistent with a standard procedure that is used to circumvent the still prevalent issue of mischaracterizations as shown for dimethyl sphingosine and C20 sphingosine. Our analysis revealed a notable consistency in MS/MS data and identifications, with fragment ions' m/z values exhibiting the highest concordance between instrument platforms at 20 eV, the other collisional energies (0, 10, and 40 eV) were significantly lower. While moving toward a standardized ESI MS/MS protocol is required for dependable molecular characterization, our results also underscore the continued importance of corroborating MS/MS data against standards to ensure accurate identifications. Our findings suggest that ESI MS/MS manufacturers, akin to the established norms for gas chromatography mass spectrometry instruments, should standardize the collision energy at 20 eV across different instrument platforms.


Subject(s)
Sphingosine , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Gas Chromatography-Mass Spectrometry , Ions
2.
iScience ; 27(2): 108884, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318352

ABSTRACT

Saliva is a complex bodily fluid composed of secretions by major and minor salivary glands. Salivary glands and their secretions are known to be unevenly distributed in the human oral cavity. Moreover, saliva flow rate and composition vary across locations and time of the day. This remarkable heterogeneity of salivary secretions suggests that different subtypes of saliva fulfill different functions. By coupling a non-invasive and facile collection method with comprehensive metabolomic profiling, we investigated the spatial and temporal distributions of salivary components. We identified location-specific metabolite profiles, novel oscillating metabolites, and location-specific diurnal patterns. In summary, our study paves the way for a deeper and more comprehensive understanding of the complex dynamics and functionalities of the salivary metabolome and its integration in multi-omics studies related to oral and systemic (patho-)physiology.

3.
Antimicrob Agents Chemother ; 67(6): e0032823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37184389

ABSTRACT

Daptomycin is a last-resort antibiotic used for the treatment of infections caused by Gram-positive antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Treatment failure is commonly linked to accumulation of point mutations; however, the contribution of single mutations to resistance and the mechanisms underlying resistance remain incompletely understood. Here, we show that a single nucleotide polymorphism (SNP) selected during daptomycin therapy inactivates the highly conserved ClpP protease and is causing reduced susceptibility of MRSA to daptomycin, vancomycin, and ß-lactam antibiotics as well as decreased expression of virulence factors. Super-resolution microscopy demonstrated that inactivation of ClpP reduced binding of daptomycin to the septal site and diminished membrane damage. In both the parental strain and the clpP strain, daptomycin inhibited the inward progression of septum synthesis, eventually leading to lysis and death of the parental strain while surviving clpP cells were able to continue synthesis of the peripheral cell wall in the presence of 10× MIC daptomycin, resulting in a rod-shaped morphology. To our knowledge, this is the first demonstration that synthesis of the outer cell wall continues in the presence of daptomycin. Collectively, our data provide novel insight into the mechanisms behind bacterial killing and resistance to this important antibiotic. Also, the study emphasizes that treatment with last-line antibiotics is selective for mutations that, like the SNP in clpP, favor antibiotic resistance over virulence gene expression.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Daptomycin/pharmacology , Staphylococcus aureus/genetics , Vancomycin/pharmacology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
4.
J Proteome Res ; 22(6): 1734-1746, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37010854

ABSTRACT

In this study, we present high-throughput (HT) venomics, a novel analytical strategy capable of performing a full proteomic analysis of a snake venom within 3 days. This methodology comprises a combination of RP-HPLC-nanofractionation analytics, mass spectrometry analysis, automated in-solution tryptic digestion, and high-throughput proteomics. In-house written scripts were developed to process all the obtained proteomics data by first compiling all Mascot search results for a single venom into a single Excel sheet. Then, a second script plots each of the identified toxins in so-called Protein Score Chromatograms (PSCs). For this, for each toxin, identified protein scores are plotted on the y-axis versus retention times of adjacent series of wells in which a toxin was fractionated on the x-axis. These PSCs allow correlation with parallel acquired intact toxin MS data. This same script integrates the PSC peaks from these chromatograms for semiquantitation purposes. This new HT venomics strategy was performed on venoms from diverse medically important biting species; Calloselasma rhodostoma, Echis ocellatus, Naja pallida, Bothrops asper, Bungarus multicinctus, Crotalus atrox, Daboia russelii, Naja naja, Naja nigricollis, Naja mossambica, and Ophiophagus hannah. Our data suggest that high-throughput venomics represents a valuable new analytical tool for increasing the throughput by which we can define venom variation and should greatly aid in the future development of new snakebite treatments by defining toxin composition.


Subject(s)
Snake Bites , Viperidae , Animals , Proteomics/methods , Snake Venoms/chemistry , Bungarus/metabolism , Viperidae/metabolism , Elapid Venoms/chemistry
5.
J Biol Chem ; 299(4): 103027, 2023 04.
Article in English | MEDLINE | ID: mdl-36805335

ABSTRACT

Imbalances in the amounts of amyloid-ß peptides (Aß) generated by the membrane proteases ß- and γ-secretase are considered as a trigger of Alzheimer's disease (AD). Cell-free studies of γ-secretase have shown that increasing membrane thickness modulates Aß generation but it has remained unclear if these effects are translatable to cells. Here we show that the very long-chain fatty acid erucic acid (EA) triggers acyl chain remodeling in AD cell models, resulting in substantial lipidome alterations which included increased esterification of EA in membrane lipids. Membrane remodeling enhanced γ-secretase processivity, resulting in the increased production of the potentially beneficial Aß37 and/or Aß38 species in multiple cell lines. Unexpectedly, we found that the membrane remodeling stimulated total Aß secretion by cells expressing WT γ-secretase but lowered it for cells expressing an aggressive familial AD mutant γ-secretase. We conclude that EA-mediated modulation of membrane composition is accompanied by complex lipid homeostatic changes that can impact amyloidogenic processing in different ways and elicit distinct γ-secretase responses, providing critical implications for lipid-based AD treatment strategies.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Membrane Lipids/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cell Line , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/metabolism
6.
Metabolites ; 12(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36557262

ABSTRACT

The interaction of malaria parasites with their human host is extensively studied, yet only few studies reported how P. falciparum infection affects urinary metabolite profiles and how this is associated with immunity. We present a longitudinal study of the urinary metabolic profiles of twenty healthy Africans with lifelong exposure to malaria and five malaria-naïve Europeans, who were all challenged with direct venous inoculation of live P. falciparum sporozoïtes (PfSPZ) and followed up until they developed symptoms or became thick blood smear positive (TBS). Urine samples were collected before and at 2, 5, 9 and 11 days post challenge and were analysed. Upon infection, all Europeans became TBS positive, while Africans showed either a delay in time to parasitaemia or controlled infection. Our metabolic data showed that Europeans and Africans had distinct alterations in metabolite patterns, with changes mostly seen on days 5 and 9 post PfSPZ infection, and more prominently in Europeans. Within the African group, the levels of formate, urea, trimethylamine, threonine, choline, myo-inositol and acetate were significantly higher in TBS positive whereas the levels of pyruvate, 3-methylhistidine and dimethylglycine were significantly lower in individuals who remained TBS negative. Notably, before inoculation with PfSPZ, a group of metabolites including phenylacetylglutamine can potentially be used to predict parasitaemia control among Africans. Taken together, this study highlights the difference in urinary metabolic changes in response to malaria infection as a consequence of lifelong exposure to malaria and that change detectable before challenge might predict the control of parasitaemia in malaria-endemic areas.

7.
Microbiol Spectr ; 10(4): e0169322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862998

ABSTRACT

Fusion of cells is an important and common biological process that leads to the mixing of cellular contents and the formation of multinuclear cells. Cell fusion occurs when distinct membranes are brought into proximity of one another and merge to become one. Fusion holds promise for biotechnological innovations, for instance, for the discovery of urgently needed new antibiotics. Here, we used antibiotic-producing bacteria that can proliferate without their cell wall as a model to investigate cell-cell fusion. We found that fusion between genetically distinct cells yields heterokaryons that are viable, contain multiple selection markers, and show increased antimicrobial activity. The rate of fusion induced using physical and chemical methods was dependent on membrane fluidity, which is related to lipid composition as a function of cellular age. Finally, by using an innovative system of synthetic membrane-associated lipopeptides, we achieved targeted fusion between distinctly marked cells to further enhance fusion efficiency. These results provide a molecular handle to understand and control cell-cell fusion, which can be used in the future for the discovery of new drugs. IMPORTANCE Cell-cell fusion is instrumental in introducing different sets of genes in the same environment, which subsequently leads to diversity. There is need for new protocols to fuse cells of different types together for biotechnological applications like drug discovery. We present here wall-deficient cells as a platform for the same. We identify the fluidity of the membrane as an important characteristic for the process of fusion. We demonstrate a cell-specific approach for fusion using synthetically designed peptides yielding cells with modified antibiotic production profiles. Overall, wall-deficient cells can be a chassis for innovative metabolite production by providing an alternative method for cell-cell fusion.


Subject(s)
Membrane Fusion , Peptides , Anti-Bacterial Agents/pharmacology , Bacteria , Cell Fusion , Peptides/chemistry
8.
J Am Soc Mass Spectrom ; 33(3): 530-534, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35174708

ABSTRACT

Neutral loss (NL) spectral data presents a mirror of MS2 data and is a valuable yet largely untapped resource for molecular discovery and similarity analysis. Tandem mass spectrometry (MS2) data is effective for the identification of known molecules and the putative identification of novel, previously uncharacterized molecules (unknowns). Yet, MS2 data alone is limited in characterizing structurally related molecules. To facilitate unknown identification and complement the METLIN-MS2 fragment ion database for characterizing structurally related molecules, we have created a MS2 to NL converter as a part of the METLIN platform. The converter has been used to transform METLIN's MS2 data into a neutral loss database (METLIN-NL) on over 860 000 individual molecular standards. The platform includes both the MS2 to NL converter and a graphical user interface enabling comparative analyses between MS2 and NL data. Examples of NL spectral data are shown with oxylipin analogues and two structurally related statin molecules to demonstrate NL spectra and their ability to help characterize structural similarity. Mirroring MS2 data to generate NL spectral data offers a unique dimension for chemical and metabolite structure characterization.

9.
Immunology ; 165(1): 99-109, 2022 01.
Article in English | MEDLINE | ID: mdl-34431087

ABSTRACT

Dendritic cells (DCs) bridge the connection between innate and adaptive immunity. DCs present antigens to T cells and stimulate potent cytotoxic T-cell responses. Metabolic reprogramming is critical for DC development and activation; however, metabolic adaptations and regulation in DC subsets remains largely uncharacterized. Here, we mapped metabolomic and lipidomic signatures associated with the activation phenotype of human conventional DC type 1, a DC subset specialized in cross-presentation and therefore of major importance for the stimulation of CD8+ T cells. Our metabolomics and lipidomic analyses showed that Toll-like receptor (TLR) stimulation altered glycerolipids and amino acids in cDC1. Poly I:C or pRNA stimulation reduced triglycerides and cholesterol esters, as well as various amino acids. Moreover, TLR stimulation reduced expression of glycolysis-regulating genes and did not induce glycolysis. Conversely, cDC1 exhibited increased mitochondrial content and oxidative phosphorylation (OXPHOS) upon TLR3 or TLR7/8 stimulation. Our findings highlight the metabolic adaptations required for cDC1 maturation.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Lipid Metabolism , Lipidomics , Amino Acids/metabolism , Biomarkers , Cytokines/metabolism , Humans , Immunophenotyping , Lipidomics/methods , Lipopolysaccharide Receptors/metabolism , Metabolic Networks and Pathways , Metabolome , Metabolomics , Oxidative Phosphorylation , Thrombomodulin/metabolism , Toll-Like Receptors/metabolism
10.
STAR Protoc ; 2(4): 101002, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34917980

ABSTRACT

Here, we present a spatially resolved sampling protocol for the oral human cavity aimed at untargeted metabolomics. We describe the spatial collection of salivary biospecimens, their preparation, and subsequent mass-spectrometry-based untargeted metabolomics analysis. Our protocol avoids complex procedures generally required for gland-specific saliva collection. For the human oral cavity, we provide an easy, flexible, and reproducible solution to comprehensively map the highly heterogeneous environment and elucidate the functionality of salivary components. For complete details on the use and execution of this protocol, please refer to Ciurli et al. (2021).


Subject(s)
Metabolomics/methods , Mouth/chemistry , Chromatography, Liquid , Humans , Mass Spectrometry/methods , Metabolome/physiology , Mouth/metabolism , Saliva/chemistry , Saliva/metabolism
11.
J Am Soc Mass Spectrom ; 32(11): 2644-2654, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34633184

ABSTRACT

Enhanced in-source fragmentation/annotation (EISA) has recently been shown to produce fragment ions that match tandem mass spectrometry data across a wide range of small molecules. EISA has been developed to facilitate data-dependent acquisition (DDA), data-independent acquisiton (DIA), and multiple-reaction monitoring (MRM), enabling molecular identifications in untargeted metabolomics and targeted quantitative single-quadrupole MRM (Q-MRM) analyses. Here, EISA has been applied to peptide-based proteomic analysis using optimized in-source fragmentation to generate fragmentation patterns for a mixture of 38 peptides, which were comparable to the b- and y-type fragment ions typically observed in tandem MS experiments. The optimal in-source fragmentation conditions at which high-abundance peptide fragments and precursor ions coexist were compared with automated data-dependent acquisition (DDA) in the same quadrupole time-of-flight (QTOF-MS) mass spectrometer, generating a significantly higher fragment percentage of peptides from both singly and doubly charged b- and y-type fragment (b+, y+, b2+, and y2+) ions. Higher fragment percentages were also observed for these fragment ion series over linear ion trap instrumentation. An XCMS-EISA annotation/deconvolution program was developed, making use of the retention time and peak shape continuity between precursor fragment ions, to perform automated proteomic data analysis on the enhanced in-source fragments. Post-translational modification (PTM) characterization on peptides was demonstrated with EISA, producing fragment ions corresponding to a neutral loss of phosphoric acid with greater intensity than observed with DDA on a QTOF-MS. Moreover, Q-MRM demonstrated the ability to use EISA for peptide quantification. The availability of more sophisticated in-source fragmentation informatics, beyond XCMS-EISA, will further enable EISA for sensitive autonomous identification and Q-MRM quantitative analyses in proteomics.


Subject(s)
Molecular Sequence Annotation/methods , Peptide Fragments/analysis , Peptide Fragments/chemistry , Proteomics/methods , Ions/analysis , Ions/chemistry , Sensitivity and Specificity
12.
iScience ; 24(7): 102768, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34278270

ABSTRACT

Saliva is a complex bodily fluid composed of metabolites secreted by major and minor glands, as well as by-products of host oral cells, oral bacteria, gingival crevicular fluid, and exogenous compounds. Major salivary glands include the paired parotid, submandibular, and sublingual glands. The secreted fluids of the salivary glands vary in composition, flow rate, site of release, and clearance suggesting that different types of saliva fulfill different functions and therefore can provide unique biological information. Consequently, for the comprehension of the functionality of the salivary components, spatially resolved investigations are warranted. To understand and comprehensively map the highly heterogeneous environment of the oral cavity, advanced spatial sampling techniques for metabolomics analysis are needed. Here, we present a systematic evaluation of collection devices for spatially resolved sampling aimed at untargeted metabolomics and propose a comprehensive and reproducible collection and analysis protocol for the spatially resolved analysis of the human oral metabolome.

13.
Anal Chem ; 93(31): 10879-10889, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34313111

ABSTRACT

Single quadrupole mass spectrometry (MS) with enhanced in-source multiple fragment ion monitoring was designed to perform high sensitivity quantitative mass analyses. Enhanced in-source fragmentation amplifies fragmentation from traditional soft electrospray ionization producing fragment ions that have been found to be identical to those generated in tandem MS. We have combined enhanced in-source fragmentation data with criteria established by the European Union Commission Directive 2002/657/EC for electron ionization single quadrupole quantitative analysis to perform quantitative analyses. These experiments were performed on multiple types of complex samples that included a mixture of 50 standards, as well as cell and plasma extracts. The dynamic range for these quantitative analyses was comparable to triple quadrupole multiple reaction monitoring (MRM) analyses at up to 5 orders of magnitude with the cell and plasma extracts showing similar matrix effects across both platforms. Amino acid and fatty acid measurements performed from certified NIST 1950 plasma with isotopically labeled standards demonstrated accuracy in the range of 91-110% for the amino acids, 76-129% for the fatty acids, and good precision (coefficient of variation <10%). To enhance specificity, a newly developed correlated ion monitoring algorithm was designed to facilitate these analyses. This algorithm autonomously processes, aligns, filters, and compiles multiple ions within one chromatogram enabling both precursor and in-source fragment ions to be correlated within a single chromatogram, also enabling the detection of coeluting species based on precursor and fragment ion ratios. Single quadrupole instrumentation can provide MRM level quantitative performance by monitoring/correlating precursor and fragment ions facilitating high sensitivity analysis on existing single quadrupole instrumentation that are generally inexpensive, easy to operate, and technically less complex.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Ions , Plasma , Spectrometry, Mass, Electrospray Ionization
14.
Transl Stroke Res ; 12(4): 581-592, 2021 08.
Article in English | MEDLINE | ID: mdl-33052545

ABSTRACT

In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 µM, Wilcoxon p < 0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77, p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.


Subject(s)
Gastrointestinal Microbiome , Aged , Anaerobiosis , Bacteria , Case-Control Studies , Humans , RNA, Ribosomal, 16S/genetics
15.
Nat Metab ; 2(10): 1046-1061, 2020 10.
Article in English | MEDLINE | ID: mdl-32958937

ABSTRACT

Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.


Subject(s)
Glycolysis/drug effects , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory/metabolism , CD3 Complex/metabolism , Citric Acid Cycle/drug effects , Glucose/metabolism , Glucose/pharmacology , Humans , Lactic Acid/blood , Lactic Acid/metabolism , Metabolome , Phosphatidylinositol 3-Kinases/metabolism , RNA/chemistry , Receptors, Tumor Necrosis Factor, Type II/drug effects , Sequence Analysis, RNA , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
16.
Biomed Res Int ; 2020: 1242364, 2020.
Article in English | MEDLINE | ID: mdl-32714973

ABSTRACT

BACKGROUND: A functional interplay between BAs and microbial composition in gut is a well-documented phenomenon. In bile, this phenomenon is far less studied, and with this report, we describe the interactions between the BAs and microbiota in this complex biological matrix. Methodology. Thirty-seven gallstone disease patients of which twenty-one with Opisthorchis felineus infection were enrolled in the study. The bile samples were obtained during laparoscopic cholecystectomy for gallstone disease operative treatment. Common bile acid composition was measured by LC-MS/MS. Gallbladder microbiota were previously analyzed with 16S rRNA gene sequencing on Illumina MiSeq platform. The associations between bile acid composition and microbiota were analyzed. RESULTS: Bile acid signature and Opisthorchis felineus infection status exert influence on beta-diversity of bile microbial community. Direct correlations were found between taurocholic acid, taurochenodeoxycholic acid concentrations, and alpha-diversity of bile microbiota. Taurocholic acid and taurochenodeoxycholic acid both show positive associations with the presence of Chitinophagaceae family, Microbacterium and Lutibacterium genera, and Prevotella intermedia. Also, direct associations were identified for taurocholic acid concentration and the presence of Actinomycetales and Bacteroidales orders, Lautropia genus, Jeotgalicoccus psychrophilus, and Haemophilus parainfluenzae as well as for taurochenodeoxycholic acid and Acetobacteraceae family and Sphingomonas genus. There were no differences in bile acid concentrations between O. felineus-infected and noninfected patients. Conclusions/Significance. Associations between diversity, taxonomic profile of bile microbiota, and bile acid levels were evidenced in patients with cholelithiasis. Increase of taurochenodeoxycholic acid and taurocholic acid concentration correlates with bile microbiota alpha-diversity and appearance of opportunistic pathogens.


Subject(s)
Bile Acids and Salts/metabolism , Bile Ducts/microbiology , Cholelithiasis/microbiology , Microbiota , Adult , Animals , Bile Ducts/parasitology , Biodiversity , Cholelithiasis/complications , Cholelithiasis/parasitology , Female , Gallbladder/metabolism , Gallbladder/parasitology , Humans , Male , Middle Aged , Opisthorchiasis/complications , Opisthorchiasis/microbiology , Opisthorchis/physiology
17.
Biochim Biophys Acta Biomembr ; 1862(5): 183200, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31972163

ABSTRACT

The biophysical properties and biological functions of membranes are highly dependent on lipid composition. Supplementing cellular membranes with very long chain fatty acids (vlcFAs) is notoriously difficult given the extreme insolubility of vlcFAs in aqueous solution. Herein, we report a solvent-free, photochemical approach to enrich target membranes with vlcFA. To prevent aggregation of vlcFA, we created light-sensitive micelles composed exclusively of poly-ethylene-glycol-nervonic acid amphiphiles (NA-PEG), which spontaneously disassemble in the presence of lipid bilayers. Once embedded within a membrane, UV light is used to cleave off PEG, leaving free nervonic acid (NA, i.e. FA24:1) in the target membrane. When applied to living cells, free NA was processed by the cell to generate various species of membrane and other lipids with incorporated vlcFAs. In this way, we were able to alter the membrane lipid composition of cellular membranes and modulate the enzymatic activity of γ-secretase, an intramembrane protease whose dysfunction has been implicated in the onset and progression of Alzheimer's disease.


Subject(s)
Cell Membrane/chemistry , Fatty Acids/chemistry , Lipid Bilayers/chemistry , Alzheimer Disease , Amyloid Precursor Protein Secretases/metabolism , Cell Membrane/metabolism , Fatty Acids, Monounsaturated/chemistry , Humans , Lipid Bilayers/isolation & purification , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Membranes/metabolism , Micelles , Photochemical Processes , Polyethylene Glycols/chemistry
18.
Front Pharmacol ; 9: 1193, 2018.
Article in English | MEDLINE | ID: mdl-30459607

ABSTRACT

Prevention and treatment of drug-induced renal injury (DIRI) rely on the availability of sensitive and specific biomarkers of early kidney injury and predictive animal models of human pathophysiology. This study aimed to evaluate the potential of zebrafish larvae as translational model in metabolic profiling of DIRI. Zebrafish larvae were exposed to the lethal concentration for 10% of the larvae (LC10) or ½ LC10 of gentamicin, paracetamol and tenofovir as tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). Metabolites were extracted from whole larvae and analyzed by liquid chromatography-mass spectrometry. Principal component analysis showed that drug exposition to the LC10 of paracetamol, TFV, and TDF was the main source of the variance of the data. To identify the metabolites responsible for the toxic effects of the drugs, partial least squares discriminant analyses were built between the LC10 and ½ LC10 for each drug. Features with variable importance in projection> 1.0 were selected and Venn diagrams were built to differentiate between the common and drug specific metabolites of DIRI. Creatine, tyrosine, glutamine, guanosine, hypoxanthine were identified as common metabolites, adenosine and tryptophan as paracetamol-specific and xanthine and oxidized glutathione as tenofovir-specific. Those metabolic changes can be associated with alterations in energy metabolism, xenobiotic detoxification and protein catabolism, all described in the human pathophysiology of DIRI. Thus, zebrafish proved to be a suitable model to characterize the metabolic changes associated with DIRI. This information can be useful to early diagnose DIRI and to improve our knowledge on the mechanisms of DIRI.

19.
Anal Chim Acta ; 1037: 107-118, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30292284

ABSTRACT

Schistosoma mansoni is a parasitic helminth that infects millions of people mostly in tropical parts of the world. Different life cycle stages of S.mansoni, that infect or develop in the human host, promote distinct immune responses and are known for their ability to modulate host immune responses. However, the molecular mechanisms through which the parasites interact with, and modulate the host immune system remain incompletely understood. Despite the well-known ability of various lipids to modulate immune responses, a comprehensive analysis of the lipidome of the different life cycle stages has not been performed. Using three complementary MS-based platforms to detect and quantify around 350 lipid species, we here characterized the lipid profiles of S. mansoni cercariae, worms and eggs, as well as extracts and excretory/secretory (ES) products of different life cycle stages of S. mansoni. We identified life cycle stage specific signatures of lipid classes of which cercariae were found to have the most distinct profile. Moreover, we detected several immunolomodulatory oxylipids in the different life cycle stages. Specifically, prostaglandins were found to be most highly enriched in egg preparations, while resolvins were specifically detected in cercariae. Together, the generation of this detailed lipid database of the different life cycle stages of S. mansoni will not only be important for a better understanding of the biology of the parasite itself but also of host-parasite interactions and how that could result in immunomodulation.


Subject(s)
Lipids/immunology , Schistosoma mansoni/immunology , Animals , Host-Parasite Interactions , Humans , Immunomodulation
20.
Atherosclerosis ; 275: 149-155, 2018 08.
Article in English | MEDLINE | ID: mdl-29902703

ABSTRACT

BACKGROUND AND AIMS: We recently showed that plasma cholesteryl ester transfer protein (CETP) is mainly derived from VSIG4-positive Kupffer cells. Activation of these cells by the bacterial endotoxin lipopolysaccharide (LPS) strongly decreases CETP expression. As Kupffer cell activation plays a detrimental role in the progression of non-alcoholic fatty liver disease (NAFLD), we aimed to study if metabolic liver inflammation is also associated with a decrease in hepatic and circulating CETP. METHODS: We collected plasma and liver biopsy samples at various stages of NAFLD from 93 obese individuals who underwent bariatric surgery. Liver lobular inflammation was histologically determined, and liver CETP expression, CETP positive cells, circulating CETP concentrations, and liver VSIG4 expression were quantified. RESULTS: Mean (SD) plasma CETP concentration was 2.68 (0.89) µg/mL. In the presence of liver inflammation, compared to the absence of pathology, the difference in hepatic CETP expression was -0.03 arbitrary units (95% CI -0.26, 0.20), the difference in number of hepatic CETP positive cells (range 11-140 per mm2) was -20.0 per mm2 (95% CI -41.6, 1.9), and the difference in plasma CETP was -0.35 µg/mL (95% CI -0.80, 0.10). Hepatic VSIG4 expression was not associated with liver inflammation (0.00; 95% CI -0.15, 0.15). CONCLUSIONS: We found no strong evidence for a strong negative association between metabolic liver inflammation and CETP-related outcomes in obese individuals, although we observed consistent trends. These data indicate that metabolic liver inflammation does not mimic the strong effects of LPS on the hepatic expression and production of CETP by Kupffer cells.


Subject(s)
Cholesterol Ester Transfer Proteins/blood , Hepatitis/blood , Kupffer Cells/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/blood , Obesity/blood , Adult , Bariatric Surgery , Biomarkers/blood , Biopsy , Cholesterol Ester Transfer Proteins/genetics , Cross-Sectional Studies , Female , Hepatitis/diagnosis , Hepatitis/etiology , Humans , Kupffer Cells/pathology , Liver/pathology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Obesity/diagnosis , Obesity/surgery , Receptors, Complement/genetics , Receptors, Complement/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...