Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neonatal Screen ; 10(1)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535124

ABSTRACT

In this study, we compare next-generation sequencing (NGS) approaches (targeted panel (tNGS), whole exome sequencing (WES), and whole genome sequencing (WGS)) for application in newborn screening (NBS). DNA was extracted from dried blood spots (DBS) from 50 patients with genetically confirmed inherited metabolic disorders (IMDs) and 50 control samples. One hundred IMD-related genes were analyzed. Two data-filtering strategies were applied: one to detect only (likely) pathogenic ((L)P) variants, and one to detect (L)P variants in combination with variants of unknown significance (VUS). The variants were filtered and interpreted, defining true/false positives (TP/FP) and true/false negatives (TN/FN). The variant filtering strategies were assessed in a background cohort (BC) of 4833 individuals. Reliable results were obtained within 5 days. TP results (47 patient samples) for tNGS, WES, and WGS results were 33, 31, and 30, respectively, using the (L)P filtering, and 40, 40, and 38, respectively, when including VUS. FN results were 11, 13, and 14, respectively, excluding VUS, and 4, 4, and 6, when including VUS. The remaining FN were mainly samples with a homozygous VUS. All controls were TN. Three BC individuals showed a homozygous (L)P variant, all related to a variable, mild phenotype. The use of NGS-based workflows in NBS seems promising, although more knowledge of data handling, automated variant interpretation, and costs is needed before implementation.

2.
Clin Chem ; 61(1): 154-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25274553

ABSTRACT

BACKGROUND: Dideoxy-based chain termination sequencing developed by Sanger is the gold standard sequencing approach and allows clinical diagnostics of disorders with relatively low genetic heterogeneity. Recently, new next generation sequencing (NGS) technologies have found their way into diagnostic laboratories, enabling the sequencing of large targeted gene panels or exomes. The development of benchtop NGS instruments now allows the analysis of single genes or small gene panels, making these platforms increasingly competitive with Sanger sequencing. METHODS: We developed a generic automated ion semiconductor sequencing work flow that can be used in a clinical setting and can serve as a substitute for Sanger sequencing. Standard amplicon-based enrichment remained identical to PCR for Sanger sequencing. A novel postenrichment pooling strategy was developed, limiting the number of library preparations and reducing sequencing costs up to 70% compared to Sanger sequencing. RESULTS: A total of 1224 known pathogenic variants were analyzed, yielding an analytical sensitivity of 99.92% and specificity of 99.99%. In a second experiment, a total of 100 patient-derived DNA samples were analyzed using a blind analysis. The results showed an analytical sensitivity of 99.60% and specificity of 99.98%, comparable to Sanger sequencing. CONCLUSIONS: Ion semiconductor sequencing can be a first choice mutation scanning technique, independent of the genes analyzed.


Subject(s)
DNA/analysis , High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Sequence Analysis, DNA/methods , DNA/genetics , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing/instrumentation , Humans , Molecular Diagnostic Techniques/instrumentation , Polymerase Chain Reaction , Reproducibility of Results , Robotics , Semiconductors , Sensitivity and Specificity , Sequence Analysis, DNA/instrumentation
3.
Hum Mutat ; 34(12): 1721-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24123792

ABSTRACT

The advent of massive parallel sequencing is rapidly changing the strategies employed for the genetic diagnosis and research of rare diseases that involve a large number of genes. So far it is not clear whether these approaches perform significantly better than conventional single gene testing as requested by clinicians. The current yield of this traditional diagnostic approach depends on a complex of factors that include gene-specific phenotype traits, and the relative frequency of the involvement of specific genes. To gauge the impact of the paradigm shift that is occurring in molecular diagnostics, we assessed traditional Sanger-based sequencing (in 2011) and exome sequencing followed by targeted bioinformatics analysis (in 2012) for five different conditions that are highly heterogeneous, and for which our center provides molecular diagnosis. We find that exome sequencing has a much higher diagnostic yield than Sanger sequencing for deafness, blindness, mitochondrial disease, and movement disorders. For microsatellite-stable colorectal cancer, this was low under both strategies. Even if all genes that could have been ordered by physicians had been tested, the larger number of genes captured by the exome would still have led to a clearly superior diagnostic yield at a fraction of the cost.


Subject(s)
Exome , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Genetic Counseling , Genetic Testing , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
4.
Eur J Cell Biol ; 91(8): 629-39, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22425609

ABSTRACT

Myosin II is a hexameric protein complex consisting of two myosin heavy chains, two myosin essential light chains and two myosin regulatory light chains. Multiple subunit isoforms exist, allowing great diversity in myosin II composition which likely impacts on its contractile properties. Little is known about the evolutionary origin, expression pattern and function of myosin regulatory light chain (MLC2) isoforms. We analysed the evolutionary relationship between smooth muscle (sm), nonmuscle (nm) and nonmuscle-like (nml) MLC2 genes, which encode three homologous proteins expressed in nonmuscle cells. The three genes arose by successive gene duplication events. The high sequence similarity between the tandemly arranged nm- and nml-MLC2 genes is best explained by gene conversion. Urea/glycerol-polyacrylamide gel electrophoresis and RNA analysis were employed to monitor expression of sm-, nm- and nml-MLC2 in human and mouse cell lines. Conspicuous differences between transformed and non-transformed cells were observed, with sm-MLC2 being suppressed in Ras-transformed cells. Our findings shed light on the evolutionary history of three homologous MLC2 proteins and point to isoform-specific cell growth-related roles in nonmuscle cell myosin II contractility.


Subject(s)
Cardiac Myosins/metabolism , Gene Conversion , Gene Duplication , Gene Expression Regulation, Neoplastic , Myosin Light Chains/metabolism , Amino Acid Sequence , Animals , Cardiac Myosins/classification , Cardiac Myosins/genetics , Electrophoresis, Polyacrylamide Gel/methods , Evolution, Molecular , HeLa Cells , Humans , Mice , Molecular Sequence Data , Myosin Light Chains/classification , Myosin Light Chains/genetics , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...