Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Nat Commun ; 15(1): 4866, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849373

ABSTRACT

Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , Collagen Type I , Mechanotransduction, Cellular , Neoplasm Invasiveness , Transcription Factors , YAP-Signaling Proteins , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cell Line, Tumor , Collagen Type I/metabolism , Gene Expression Regulation, Neoplastic , Organoids/metabolism , Organoids/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
2.
J Pathol Clin Res ; 10(2): e12361, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38618992

ABSTRACT

Invasive lobular carcinoma (ILC) is a special breast cancer type characterized by noncohesive growth and E-cadherin loss. Focal activation of P-cadherin expression in tumor cells that are deficient for E-cadherin occurs in a subset of ILCs. Switching from an E-cadherin deficient to P-cadherin proficient status (EPS) partially restores cell-cell adhesion leading to the formation of cohesive tubular elements. It is unknown what conditions control EPS. Here, we report on EPS in ILC metastases in the large bowel. We reviewed endoscopic colon biopsies and colectomy specimens from a 52-year-old female (index patient) and of 18 additional patients (reference series) diagnosed with metastatic ILC in the colon. EPS was assessed by immunohistochemistry for E-cadherin and P-cadherin. CDH1/E-cadherin mutations were determined by next-generation sequencing. The index patient's colectomy showed transmural metastatic ILC harboring a CDH1/E-cadherin p.Q610* mutation. ILC cells displayed different growth patterns in different anatomic layers of the colon wall. In the tunica muscularis propria and the tela submucosa, ILC cells featured noncohesive growth and were E-cadherin-negative and P-cadherin-negative. However, ILC cells invading the mucosa formed cohesive tubular elements in the intercryptal stroma of the lamina propria mucosae. Inter-cryptal ILC cells switched to a P-cadherin-positive phenotype in this microenvironmental niche. In the reference series, colon mucosa infiltration was evident in 13 of 18 patients, one of which showed intercryptal EPS and conversion to cohesive growth as described in the index patient. The large bowel is a common metastatic site in ILC. In endoscopic colon biopsies, the typical noncohesive growth of ILC may be concealed by microenvironment-induced EPS and conversion to cohesive growth.


Subject(s)
Breast Neoplasms , Carcinoma, Lobular , Female , Humans , Middle Aged , Carcinoma, Lobular/genetics , Breast Neoplasms/genetics , Cadherins/genetics , Biopsy , Colon , Tumor Microenvironment
3.
NPJ Breast Cancer ; 10(1): 31, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658604

ABSTRACT

Research on metastatic cancer has been hampered by limited sample availability. Here we present the breast cancer post-mortem tissue donation program UPTIDER and show how it enabled sampling of a median of 31 (range: 5-90) metastases and 5-8 liquids per patient from its first 20 patients. In a dedicated experiment, we show the mild impact of increasing time after death on RNA quality, transcriptional profiles and immunohistochemical staining in tumor tissue samples. We show that this impact can be counteracted by organ cooling. We successfully generated ex vivo models from tissue and liquid biopsies from distinct histological subtypes of breast cancer. We anticipate these and future findings of UPTIDER to elucidate mechanisms of disease progression and treatment resistance and to provide tools for the exploration of precision medicine strategies in the metastatic setting.

4.
Mod Pathol ; 37(7): 100497, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641322

ABSTRACT

Invasive lobular carcinoma (ILC) is the second most frequent type of breast cancer (BC) and its peculiar morphology is mainly driven by inactivation of CDH1, the gene coding for E-cadherin cell adhesion protein. ILC-specific therapeutic and disease-monitoring approaches are gaining momentum in the clinic, increasing the importance of accurate ILC diagnosis. Several essential and desirable morphologic diagnostic criteria are currently defined by the World Health Organization, the routine use of immunohistochemistry (IHC) for E-cadherin is not recommended. Disagreement in the diagnosis of ILC has been repeatedly reported, but interpathologist agreement increases with the use of E-cadherin IHC. In this study, we aimed to harmonize the pathological diagnosis of ILC by comparing 5 commonly used E-cadherin antibody clones (NCH-38, EP700Y, Clone 36, NCL-L-E-cad [Clone 36B5], and ECH-6). We determined their biochemical specificity for the E-cadherin protein and IHC staining performance according to type and location of mutation on the CDH1 gene. Western blot analysis on mouse cell lines with conditional E-cadherin expression revealed a reduced specificity of EP700Y and NCL-L-E-cad for E-cadherin, with cross-reactivity of Clone 36 to P-cadherin. The use of IHC improved interpathologist agreement for ILC, lobular carcinoma in situ, and atypical lobular hyperplasia. The E-cadherin IHC staining pattern was associated with variant allele frequency and likelihood of nonsense-mediated RNA decay but not with the type or position of CDH1 mutations. Based on these results, we recommend the indication for E-cadherin staining, choice of antibodies, and their interpretation to standardize ILC diagnosis in current pathology practice.

5.
NPJ Breast Cancer ; 10(1): 23, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509112

ABSTRACT

Invasive lobular breast cancer (ILC) differs from invasive breast cancer of no special type in many ways. Evidence on treatment efficacy for ILC is, however, lacking. We studied the degree of documentation and representation of ILC in phase III/IV clinical trials for novel breast cancer treatments. Trials were identified on Pubmed and clinicaltrials.gov. Inclusion/exclusion criteria were reviewed for requirements on histological subtype and tumor measurability. Documentation of ILC was assessed and ILC inclusion rate, central pathology and subgroup analyses were evaluated. Inclusion restrictions concerning tumor measurability were found in 39/93 manuscripts. Inclusion rates for ILC were documented in 13/93 manuscripts and varied between 2.0 and 26.0%. No central pathology for ILC was reported and 3/13 manuscripts had ILC sub-analyses. ILC is largely disregarded in most trials with poor representation and documentation. The current inclusion criteria using RECIST v1.1, fall short in recognizing the unique non-measurable metastatic infiltration of ILC.

6.
J Pathol ; 261(4): 477-489, 2023 12.
Article in English | MEDLINE | ID: mdl-37737015

ABSTRACT

Invasive lobular carcinoma (ILC) is a low- to intermediate-grade histological breast cancer type caused by mutational inactivation of E-cadherin function, resulting in the acquisition of anchorage independence (anoikis resistance). Most ILC cases express estrogen receptors, but options are limited in relapsed endocrine-refractory disease as ILC tends to be less responsive to standard chemotherapy. Moreover, ILC can relapse after >15 years, an event that currently cannot be predicted. E-cadherin inactivation leads to p120-catenin-dependent relief of the transcriptional repressor Kaiso (ZBTB33) and activation of canonical Kaiso target genes. Here, we examined whether an anchorage-independent and ILC-specific transcriptional program correlated with clinical parameters in breast cancer. Based on the presence of a canonical Kaiso-binding consensus sequence (cKBS) in the promoters of genes that are upregulated under anchorage-independent conditions, we defined an ILC-specific anoikis resistance transcriptome (ART). Converting the ART genes into human orthologs and adding published Kaiso target genes resulted in the Kaiso-specific ART (KART) 33-gene signature, used subsequently to study correlations with histological and clinical variables in primary breast cancer. Using publicly available data for ERPOS Her2NEG breast cancer, we found that expression of KART was positively associated with the histological ILC breast cancer type (p < 2.7E-07). KART expression associated with younger patients in all invasive breast cancers and smaller tumors in invasive ductal carcinoma of no special type (IDC-NST) (<2 cm, p < 6.3E-10). We observed associations with favorable long-term prognosis in both ILC (hazard ratio [HR] = 0.51, 95% CI = 0.29-0.91, p < 3.4E-02) and IDC-NST (HR = 0.79, 95% CI = 0.66-0.93, p < 1.2E-04). Our analysis thus defines a new mRNA expression signature for human breast cancer based on canonical Kaiso target genes that are upregulated in E-cadherin deficient ILC. The KART signature may enable a deeper understanding of ILC biology and etiology. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Humans , Female , Breast Neoplasms/pathology , Carcinoma, Lobular/metabolism , Neoplasm Recurrence, Local , Prognosis , Cadherins/genetics , Cadherins/metabolism , Transcription Factors/metabolism , Carcinoma, Ductal, Breast/pathology
7.
Nat Mater ; 22(11): 1409-1420, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37709930

ABSTRACT

The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin ß4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that ß4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.


Subject(s)
Keratins , Laminin , Laminin/metabolism , Cell Adhesion , Extracellular Matrix/metabolism , Fibronectins/metabolism , Cytoskeleton/metabolism , Integrins/metabolism
8.
Cancer Lett ; 568: 216301, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37406727

ABSTRACT

We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Mice , Animals , Humans , Female , Wnt Signaling Pathway , Breast Neoplasms/genetics , Stem Cells , Cell Proliferation
9.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36880935

ABSTRACT

Talin-1 is the core mechanosensitive adapter protein linking integrins to the cytoskeleton. The TLN1 gene is comprised of 57 exons that encode the 2,541 amino acid TLN1 protein. TLN1 was previously considered to be expressed as a single isoform. However, through differential pre-mRNA splicing analysis, we discovered a cancer-enriched, non-annotated 51-nucleotide exon in TLN1 between exons 17 and 18, which we refer to as exon 17b. TLN1 is comprised of an N-terminal FERM domain, linked to 13 force-dependent switch domains, R1-R13. Inclusion of exon 17b introduces an in-frame insertion of 17 amino acids immediately after Gln665 in the region between R1 and R2 which lowers the force required to open the R1-R2 switches potentially altering downstream mechanotransduction. Biochemical analysis of this isoform revealed enhanced vinculin binding, and cells expressing this variant show altered adhesion dynamics and motility. Finally, we showed that the TGF-ß/SMAD3 signaling pathway regulates this isoform switch. Future studies will need to consider the balance of these two TLN1 isoforms.


Subject(s)
Neoplasms , Talin , Humans , Talin/genetics , Mechanotransduction, Cellular , Exons/genetics , Adaptor Proteins, Signal Transducing
10.
J Cell Sci ; 136(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36620935

ABSTRACT

High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers.


Subject(s)
Neoplasms , Protein-Tyrosine Kinases , Animals , Mice , Protein-Tyrosine Kinases/metabolism , Cell Line, Tumor , Cell Movement , Phosphorylation , Signal Transduction , Neoplasms/metabolism
11.
Neoplasia ; 35: 100844, 2023 01.
Article in English | MEDLINE | ID: mdl-36371908

ABSTRACT

Tissue-specific inactivation of E-cadherin combined with tumor suppressor loss leads to invasive and metastatic cancers in mice. While epidermal E-cadherin loss in mice induces squamous cell carcinomas, inactivation of E-cadherin in the mammary gland leads to invasive lobular carcinoma. To further explore the carcinogenic consequences of cell-cell adhesion loss in these compartments, we developed a new conditional mouse model inactivating E-cadherin (Cdh1) and p53 (Trp53) simultaneously in cells expressing the leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6), a putative epithelial stem cell marker in the skin and alveolar progenitor marker in the mammary gland. Compound Lgr6-CreERT2;Cdh1F;Trp53F female mice containing either heterozygous or homozygous Cdh1F alleles were bred, and Lgr6-driven Cre expression was activated in pre-puberal mice using tamoxifen. We observed that 41% of the mice (16/39) developed mostly invasive squamous-type skin carcinomas, but also a non-lobular mammary tumor was formed. In contrast to previous K14cre or WAPcre E-cadherin and p53 compound models, no significant differences were detected in the tumor-free survival of Lgr6-CreERT2 heterozygous Cdh1F/WT;Trp53F/F versus homozygous Cdh1F/F;Trp53F/F mice (778 versus 754 days, p=0.5). One Cdh1F homozygous mouse presented with lung metastasis that originated from a non-lobular and ERα negative invasive mammary gland carcinoma with squamous metaplasia. In total, 2/8 (25%) Cdh1F heterozygous and 3/12 (25%) Cdh1F homozygous mice developed metastases to lungs, liver, lymph nodes, or the gastro-intestinal tract. In conclusion, we show that inducible and conditional Lgr6-driven inactivation of E-cadherin and p53 in mice causes squamous cell carcinomas of the skin in approximately 40% of the mice and an occasional ductal-type mammary carcinoma after long latency periods.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Squamous Cell , Animals , Female , Mice , Breast Neoplasms/metabolism , Cadherins/genetics , Cadherins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
J Pathol ; 258(3): 289-299, 2022 11.
Article in English | MEDLINE | ID: mdl-36106661

ABSTRACT

R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/ß-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/ß-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Mammary Neoplasms, Animal , beta Catenin , Animals , Carcinogenesis/genetics , Hormones , Mice , Oncogenes , Steroids , Thrombospondins/genetics , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
13.
Front Endocrinol (Lausanne) ; 13: 926210, 2022.
Article in English | MEDLINE | ID: mdl-35966052

ABSTRACT

Growth hormone (GH) and insulin-like growth factor-1 (IGF1) play an important role in mammalian development, cell proliferation and lifespan. Especially in cases of tumor growth there is an urgent need to control the GH/IGF1 axis. In this study we screened a 38,480-compound library, and in two consecutive rounds of analogues selection, we identified active lead compounds based on the following criteria: inhibition the GH receptor (GHR) activity and its downstream effectors Jak2 and STAT5, and inhibition of growth of breast and colon cancer cells. The most active small molecule (BM001) inhibited both the GH/IGF1 axis and cell proliferation with an IC50 of 10-30 nM of human cancer cells. BM001 depleted GHR in human lymphoblasts. In preclinical xenografted experiments, BM001 showed a strong decrease in tumor volume in mice transplanted with MDA-MB-231 breast cancer cells. Mechanistically, the drug acts on the synthesis of the GHR. Our findings open the possibility to inhibit the GH/IGF1 axis with a small molecule.


Subject(s)
Human Growth Hormone , Receptors, Somatotropin , Animals , Cell Proliferation , Growth Hormone/physiology , Humans , Insulin-Like Growth Factor I , Mammals , Mice
14.
Mod Pathol ; 35(12): 1812-1820, 2022 12.
Article in English | MEDLINE | ID: mdl-35922548

ABSTRACT

Invasive lobular carcinoma (ILC) represents the second most common subtype of breast cancer (BC), accounting for up to 15% of all invasive BC. Loss of cell adhesion due to functional inactivation of E-cadherin is the hallmark of ILC. Although the current world health organization (WHO) classification for diagnosing ILC requires the recognition of the dispersed or linear non-cohesive growth pattern, it is not mandatory to demonstrate E-cadherin loss by immunohistochemistry (IHC). Recent results of central pathology review of two large randomized clinical trials have demonstrated relative overdiagnosis of ILC, as only ~60% of the locally diagnosed ILCs were confirmed by central pathology. To understand the possible underlying reasons of this discrepancy, we undertook a worldwide survey on the current practice of diagnosing BC as ILC. A survey was drafted by a panel of pathologists and researchers from the European lobular breast cancer consortium (ELBCC) using the online tool SurveyMonkey®. Various parameters such as indications for IHC staining, IHC clones, and IHC staining procedures were questioned. Finally, systematic reporting of non-classical ILC variants were also interrogated. This survey was sent out to pathologists worldwide and circulated from December 14, 2020 until July, 1 2021. The results demonstrate that approximately half of the institutions use E-cadherin expression loss by IHC as an ancillary test to diagnose ILC and that there is a great variability in immunostaining protocols. This might cause different staining results and discordant interpretations. As ILC-specific therapeutic and diagnostic avenues are currently explored in the context of clinical trials, it is of importance to improve standardization of histopathologic diagnosis of ILC diagnosis.


Subject(s)
Breast Neoplasms , Carcinoma in Situ , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Female , Humans , Breast Neoplasms/pathology , Cadherins/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/pathology , Immunohistochemistry , Randomized Controlled Trials as Topic
16.
Oncogene ; 41(21): 2932-2944, 2022 05.
Article in English | MEDLINE | ID: mdl-35437308

ABSTRACT

Invasive lobular breast carcinoma (ILC) is characterized by proliferative indolence and long-term latency relapses. This study aimed to identify how disseminating ILC cells control the balance between quiescence and cell cycle re-entry. In the absence of anchorage, ILC cells undergo a sustained cell cycle arrest in G0/G1 while maintaining viability. From the genes that are upregulated in anchorage independent ILC cells, we selected Inhibitor of DNA binding 2 (Id2), a mediator of cell cycle progression. Using loss-of-function experiments, we demonstrate that Id2 is essential for anchorage independent survival (anoikis resistance) in vitro and lung colonization in mice. Importantly, we find that under anchorage independent conditions, E-cadherin loss promotes expression of Id2 in multiple mouse and (organotypic) human models of ILC, an event that is caused by a direct p120-catenin/Kaiso-dependent transcriptional de-repression of the canonical Kaiso binding sequence TCCTGCNA. Conversely, stable inducible restoration of E-cadherin expression in the ILC cell line SUM44PE inhibits Id2 expression and anoikis resistance. We show evidence that Id2 accumulates in the cytosol, where it induces a sustained and CDK4/6-dependent G0/G1 cell cycle arrest through interaction with hypo-phosphorylated Rb. Finally, we find that Id2 is indeed enriched in ILC when compared to other breast cancers, and confirm cytosolic Id2 protein expression in primary ILC samples. In sum, we have linked mutational inactivation of E-cadherin to direct inhibition of cell cycle progression. Our work indicates that loss of E-cadherin and subsequent expression of Id2 drive indolence and dissemination of ILC. As such, E-cadherin and Id2 are promising candidates to stratify low and intermediate grade invasive breast cancers for the use of clinical cell cycle intervention drugs.


Subject(s)
Breast Neoplasms , Carcinoma, Lobular , Animals , Breast Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/pathology , Cell Cycle/genetics , Female , Humans , Inhibitor of Differentiation Protein 2/genetics , Mice , Neoplasm Invasiveness , Neoplasm Recurrence, Local
17.
Cell Rep ; 39(1): 110584, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385742

ABSTRACT

Elevated expression of non-receptor tyrosine kinase FER is an independent prognosticator that correlates with poor survival of high-grade and basal/triple-negative breast cancer (TNBC) patients. Here, we show that high FER levels are also associated with improved outcomes after adjuvant taxane-based combination chemotherapy in high-risk, HER2-negative patients. In TNBC cells, we observe a causal relation between high FER levels and sensitivity to taxanes. Proteomics and mechanistic studies demonstrate that FER regulates endosomal recycling, a microtubule-dependent process that underpins breast cancer cell invasion. Using chemical genetics, we identify DCTN2 as a FER substrate. Our work indicates that the DCTN2 tyrosine 6 is essential for the development of tubular recycling domains in early endosomes and subsequent propagation of TNBC cell invasion in 3D. In conclusion, we show that high FER expression promotes endosomal recycling and represents a candidate predictive marker for the benefit of adjuvant taxane-containing chemotherapy in high-risk patients, including TNBC patients.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Breast Neoplasms/metabolism , Bridged-Ring Compounds/pharmacology , Bridged-Ring Compounds/therapeutic use , Endosomes/metabolism , Female , Humans , Taxoids/pharmacology , Taxoids/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
18.
Oncogene ; 41(17): 2458-2469, 2022 04.
Article in English | MEDLINE | ID: mdl-35292774

ABSTRACT

The tumor micro-environment often contains stiff and irregular-bundled collagen fibers that are used by tumor cells to disseminate. It is still unclear how and to what extent, extracellular matrix (ECM) stiffness versus ECM bundle size and alignment dictate cancer cell invasion. Here, we have uncoupled Collagen-I bundling from stiffness by introducing inter-collagen crosslinks, combined with temperature induced aggregation of collagen bundling. Using organotypic models from mouse invasive ductal and invasive lobular breast cancers, we show that increased collagen bundling in 3D induces a generic increase in breast cancer invasion that is independent of migration mode. However, systemic collagen stiffening using advanced glycation end product (AGE) crosslinking prevents collective invasion, while leaving single cell invasion unaffected. Collective invasion into collagen matrices by ductal breast cancer cells depends on Lysyl oxidase-like 3 (Loxl3), a factor produced by tumor cells that reinforces local collagen stiffness. Finally, we present clinical evidence that collectively invading cancer cells at the invasive front of ductal breast carcinoma upregulate LOXL3. By uncoupling the mechanical, chemical, and structural cues that control invasion of breast cancer in three dimensions, our data reveal that spatial control over stiffness and bundling underlie collective dissemination of ductal-type breast cancers.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Cell Line, Tumor , Cell Movement , Collagen , Extracellular Matrix/pathology , Female , Humans , Mice , Neoplasm Invasiveness/pathology , Tumor Microenvironment
19.
J Pathol Clin Res ; 8(2): 191-205, 2022 03.
Article in English | MEDLINE | ID: mdl-34889530

ABSTRACT

Invasive lobular breast carcinoma (ILC) is the second most common breast carcinoma (BC) subtype and is mainly driven by loss of E-cadherin expression. Correct classification of BC as ILC is important for patient treatment. This study assessed the degree of agreement among pathologists for the diagnosis of ILC. Two sets of hormone receptor (HR)-positive/HER2-negative BCs were independently reviewed by participating pathologists. In set A (61 cases), participants were provided with hematoxylin/eosin (HE)-stained sections. In set B (62 cases), participants were provided with HE-stained sections and E-cadherin immunohistochemistry (IHC). Tumor characteristics were balanced. Participants classified specimens as non-lobular BC versus mixed BC versus ILC. Pairwise inter-observer agreement and agreement with a pre-defined reference diagnosis were determined with Cohen's kappa statistics. Subtype calls were correlated with molecular features, including CDH1/E-cadherin mutation status. Thirty-five pathologists completed both sets, providing 4,305 subtype calls. Pairwise inter-observer agreement was moderate in set A (median κ = 0.58, interquartile range [IQR]: 0.48-0.66) and substantial in set B (median κ = 0.75, IQR: 0.56-0.86, p < 0.001). Agreement with the reference diagnosis was substantial in set A (median κ = 0.67, IQR: 0.57-0.75) and almost perfect in set B (median κ = 0.86, IQR: 0.73-0.93, p < 0.001). The median frequency of CDH1/E-cadherin mutations in specimens classified as ILC was 65% in set A (IQR: 56-72%) and 73% in set B (IQR: 65-75%, p < 0.001). Cases with variable subtype calls included E-cadherin-positive ILCs harboring CDH1 missense mutations, and E-cadherin-negative ILCs with tubular elements and focal P-cadherin expression. ILCs with trabecular growth pattern were often misclassified as non-lobular BC in set A but not in set B. In conclusion, subtyping of BC as ILC achieves almost perfect agreement with a pre-defined reference standard, if assessment is supported by E-cadherin IHC. CDH1 missense mutations associated with preserved E-cadherin protein expression, E- to P-cadherin switching in ILC with tubular elements, and trabecular ILC were identified as potential sources of discordant classification.


Subject(s)
Breast Neoplasms , Carcinoma, Lobular , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Lobular/diagnosis , Carcinoma, Lobular/genetics , Female , Humans , Immunohistochemistry , Observer Variation
20.
Cancers (Basel) ; 13(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771558

ABSTRACT

Invasive lobular carcinoma (ILC) accounts for up to 15% of all breast cancer (BC) cases and responds well to endocrine treatment when estrogen receptor α-positive (ER+) yet differs in many biological aspects from other ER+ BC subtypes. Up to 30% of patients with ILC will develop late-onset metastatic disease up to ten years after initial tumor diagnosis and may experience failure of systemic therapy. Unfortunately, preclinical models to study ILC progression and predict the efficacy of novel therapeutics are scarce. Here, we review the current advances in ILC modeling, including cell lines and organotypic models, genetically engineered mouse models, and patient-derived xenografts. We also underscore four critical challenges that can be addressed using ILC models: drug resistance, lobular tumor microenvironment, tumor dormancy, and metastasis. Finally, we highlight the advantages of shared experimental ILC resources and provide essential considerations from the perspective of the European Lobular Breast Cancer Consortium (ELBCC), which is devoted to better understanding and translating the molecular cues that underpin ILC to clinical diagnosis and intervention. This review will guide investigators who are considering the implementation of ILC models in their research programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...