Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 99(2): 581-595, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33821479

ABSTRACT

While PIT-tag tracking using mobile antennas is being increasingly used to study fish movement and survival in streams, little is known about the limitations of the method, especially over longer periods of time and under different environmental settings. We used 6 years of data combining tagging, mobile antenna tracking and recaptures of Salmo trutta in multiple small streams in the Lake Lucerne drainage area in Switzerland to evaluate the relative importance of different environmental and intrinsic factors affecting the efficiency of the method. Our study system and experimental design allowed us to accurately verify the continuous presence and survival of recaptured fish in the stream after tracking, which meant that we could estimate detection probability with high confidence. The mean detection probability of tagged trout was 43%, but we found that fish length had a strong negative effect on detection probability, especially in males. Multivariate axes of stream environmental features did not predict efficiency but stream width alone was significantly positively correlated with efficiency. Additionally, stream temperature when tracking had a positive effect on fish detectability. Tag loss at recapture was globally rare (<8%) but common in large postspawn females (>30%). Based on the escape response of fish after detection, we could estimate the proportion of ghost tags, which reached a plateau of around 80% 2 years after tagging. We finally showed that our models of tag loss, fish detection and escape response are needed to interpret detection events. Our results highlight that individual variation in detection probability and tag loss is high and has to be considered for analysis.


Subject(s)
Rivers , Trout , Animals , Temperature
2.
J Fish Biol ; 95(5): 1215-1222, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31418819

ABSTRACT

We tested for phenotype-to-habitat associations in brown trout Salmo trutta populations from two ecologically different habitat types; i.e., groundwater and surface-water-fed streams. Additionally, we raised captive offspring from two such populations under standardised conditions to test whether potential phenotypic differentiation would be passed on to offspring. We found analogous differentiation by habitat in multiple wild populations. Some of these morphological differences were at least partially inherited by offspring. We suggest that this could have implications for both scientists and fisheries authorities studying or managing trout populations.


Subject(s)
Ecosystem , Trout/physiology , Animals , Behavior, Animal , Fisheries , Groundwater , Phenotype , Rivers , Trout/anatomy & histology
3.
Mov Ecol ; 7: 40, 2019.
Article in English | MEDLINE | ID: mdl-31890216

ABSTRACT

BACKGROUND: Seasonal spatio-temporal variation in habitat quality and abiotic conditions leads to animals migrating between different environments around the world. Whereas mean population timing of migration is often fairly well understood, explanations for variation in migratory timing within populations are often lacking. Condition-dependent tradeoffs may be an understudied mechanism that can explain this differential migration. While fixed condition-specific thresholds have been identified in earlier work on ontogenetic niche shifts, they are rare in differential migration, suggesting that thresholds in such systems can shift based on temporally variable environmental conditions. METHODS: We introduced a model based on size-specific tradeoffs between migration and growth in seasonal environments. We focused on optimal migratory timing for first-time migrants with no knowledge of an alternative habitat, which is a crucial stage in the life history of migratory salmonids. We predicted that optimal timing would occur when individuals move from their natal habitats based on a seasonally variable ratio of predation and growth. When the ratio becomes slightly more favorable in the alternative habitat, migratory movement can occur. As it keeps shifting throughout the season, the threshold for migration is variable, allowing smaller individuals to move at later dates. We compared our model predictions to empirical data on 3 years of migratory movement of more than 800 juvenile trout of varying size from natal to feeding habitat. RESULTS: Both our model and empirical data showed that large individuals, which are assumed to have a lower predation risk in the migratory habitat, move earlier in the season than smaller individuals, whose predicted predation-to-growth ratio shifted to being favorable only later in the migratory season. Our model also predicted that the observed difference in migratory timing between large and small migrants occurred most often at low values of growth differential between the two habitats, suggesting that it was not merely high growth potential but rather the tradeoff between predation and growth that shaped differential migration patterns. CONCLUSIONS: We showed the importance of considering condition-specific tradeoffs for understanding temporal population dynamics in spatially structured landscapes. Rather than assuming a fixed threshold, which appears to be absent based on previous work on salmonids, we showed that the body-size threshold for migration changed temporally throughout the season. This allowed increasingly smaller individuals to migrate when growth conditions peaked in the migratory habitat. Our model illuminates an understudied aspect of predation as part of a condition-dependent tradeoff that shapes migratory patterns, and our empirical data back patterns predicted by this model.

SELECTION OF CITATIONS
SEARCH DETAIL
...