Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Brain Commun ; 6(3): fcae175, 2024.
Article in English | MEDLINE | ID: mdl-38846536

ABSTRACT

Over the first years of life, the brain undergoes substantial organization in response to environmental stimulation. In a silent world, it may promote vision by (i) recruiting resources from the auditory cortex and (ii) making the visual cortex more efficient. It is unclear when such changes occur and how adaptive they are, questions that children with cochlear implants can help address. Here, we examined 7-18 years old children: 50 had cochlear implants, with delayed or age-appropriate language abilities, and 25 had typical hearing and language. High-density electroencephalography and functional near-infrared spectroscopy were used to evaluate cortical responses to a low-level visual task. Evidence for a 'weaker visual cortex response' and 'less synchronized or less inhibitory activity of auditory association areas' in the implanted children with language delays suggests that cross-modal reorganization can be maladaptive and does not necessarily strengthen the dominant visual sense.

2.
Front Neurosci ; 17: 1141886, 2023.
Article in English | MEDLINE | ID: mdl-37409105

ABSTRACT

Background: Cochlear implantation (CI) in prelingually deafened children has been shown to be an effective intervention for developing language and reading skill. However, there is a substantial proportion of the children receiving CI who struggle with language and reading. The current study-one of the first to implement electrical source imaging in CI population was designed to identify the neural underpinnings in two groups of CI children with good and poor language and reading skill. Methods: Data using high density electroencephalography (EEG) under a resting state condition was obtained from 75 children, 50 with CIs having good (HL) or poor language skills (LL) and 25 normal hearing (NH) children. We identified coherent sources using dynamic imaging of coherent sources (DICS) and their effective connectivity computing time-frequency causality estimation based on temporal partial directed coherence (TPDC) in the two CI groups compared to a cohort of age and gender matched NH children. Findings: Sources with higher coherence amplitude were observed in three frequency bands (alpha, beta and gamma) for the CI groups when compared to normal hearing children. The two groups of CI children with good (HL) and poor (LL) language ability exhibited not only different cortical and subcortical source profiles but also distinct effective connectivity between them. Additionally, a support vector machine (SVM) algorithm using these sources and their connectivity patterns for each CI group across the three frequency bands was able to predict the language and reading scores with high accuracy. Interpretation: Increased coherence in the CI groups suggest overall that the oscillatory activity in some brain areas become more strongly coupled compared to the NH group. Moreover, the different sources and their connectivity patterns and their association to language and reading skill in both groups, suggest a compensatory adaptation that either facilitated or impeded language and reading development. The neural differences in the two groups of CI children may reflect potential biomarkers for predicting outcome success in CI children.

3.
Trends Hear ; 27: 23312165231181757, 2023.
Article in English | MEDLINE | ID: mdl-37338981

ABSTRACT

Auditory memory is an important everyday skill evaluated more and more frequently in clinical settings as there is recently a greater recognition of the cost of hearing loss to cognitive systems. Testing often involves reading a list of unrelated items aloud; but prosodic variations in pitch and timing across the list can affect the number of items remembered. Here, we ran a series of online studies on normally-hearing participants to provide normative data (with a larger and more diverse population than the typical student sample) on a novel protocol characterizing the effects of suprasegmental properties in speech, namely investigating pitch patterns, fast and slow pacing, and interactions between pitch and time grouping. In addition to free recall, and in line with our desire to work eventually with individuals exhibiting more limited cognitive capacity, we included a cued recall task to help participants recover specifically the words forgotten during the free recall part. We replicated key findings from previous research, demonstrating the benefits of slower pacing and of grouping on free recall. However, only slower pacing led to better performance on cued recall, indicating that grouping effects may decay surprisingly fast (over a matter of one minute) compared to the effect of slowed pacing. These results provide a benchmark for future comparisons of short-term recall performance in hearing-impaired listeners and users of cochlear implants.


Subject(s)
Cochlear Implants , Hearing Loss , Speech Perception , Humans , Hearing , Cues , Hearing Loss/diagnosis
4.
Front Psychol ; 14: 1046672, 2023.
Article in English | MEDLINE | ID: mdl-37205083

ABSTRACT

Introduction: A singer's or speaker's Fach (voice type) should be appraised based on acoustic cues characterizing their voice. Instead, in practice, it is often influenced by the individual's physical appearance. This is especially distressful for transgender people who may be excluded from formal singing because of perceived mismatch between their voice and appearance. To eventually break down these visual biases, we need a better understanding of the conditions under which they occur. Specifically, we hypothesized that trans listeners (not actors) would be better able to resist such biases, relative to cis listeners, precisely because they would be more aware of appearance-voice dissociations. Methods: In an online study, 85 cisgender and 81 transgender participants were presented with 18 different actors singing or speaking short sentences. These actors covered six voice categories from high/bright (traditionally feminine) to low/dark (traditionally masculine) voices: namely soprano, mezzo-soprano (referred to henceforth as mezzo), contralto (referred to henceforth as alto), tenor, baritone, and bass. Every participant provided voice type ratings for (1) Audio-only (A) stimuli to get an unbiased estimate of a given actor's voice type, (2) Video-only (V) stimuli to get an estimate of the strength of the bias itself, and (3) combined Audio-Visual (AV) stimuli to see how much visual cues would affect the evaluation of the audio. Results: Results demonstrated that visual biases are not subtle and hold across the entire scale, shifting voice appraisal by about a third of the distance between adjacent voice types (for example, a third of the bass-to-baritone distance). This shift was 30% smaller for trans than for cis listeners, confirming our main hypothesis. This pattern was largely similar whether actors sung or spoke, though singing overall led to more feminine/high/bright ratings. Conclusion: This study is one of the first demonstrations that transgender listeners are in fact better judges of a singer's or speaker's voice type because they are better able to separate the actors' voice from their appearance, a finding that opens exciting avenues to fight more generally against implicit (or sometimes explicit) biases in voice appraisal.

5.
Clin Neurophysiol ; 149: 133-145, 2023 05.
Article in English | MEDLINE | ID: mdl-36965466

ABSTRACT

OBJECTIVE: Although children with cochlear implants (CI) achieve remarkable success with their device, considerable variability remains in individual outcomes. Here, we explored whether auditory evoked potentials recorded during an oddball paradigm could provide useful markers of auditory processing in this pediatric population. METHODS: High-density electroencephalography (EEG) was recorded in 75 children listening to standard and odd noise stimuli: 25 had normal hearing (NH) and 50 wore a CI, divided between high language (HL) and low language (LL) abilities. Three metrics were extracted: the first negative and second positive components of the standard waveform (N1-P2 complex) close to the vertex, the mismatch negativity (MMN) around Fz and the late positive component (P3) around Pz of the difference waveform. RESULTS: While children with CIs generally exhibited a well-formed N1-P2 complex, those with language delays typically lacked reliable MMN and P3 components. But many children with CIs with age-appropriate skills showed MMN and P3 responses similar to those of NH children. Moreover, larger and earlier P3 (but not MMN) was linked to better literacy skills. CONCLUSIONS: Auditory evoked responses differentiated children with CIs based on their good or poor skills with language and literacy. SIGNIFICANCE: This short paradigm could eventually serve as a clinical tool for tracking the developmental outcomes of implanted children.


Subject(s)
Cochlear Implantation , Cochlear Implants , Child , Humans , Acoustic Stimulation , Evoked Potentials, Auditory/physiology , Auditory Perception/physiology , Electroencephalography
6.
J Voice ; 37(3): 466.e1-466.e15, 2023 May.
Article in English | MEDLINE | ID: mdl-33745802

ABSTRACT

OBJECTIVE: Using voice to speak or to sing is made possible by remarkably complex sensorimotor processes. Like any other sensorimotor system, the speech motor controller guides its actions with maximum performance at minimum cost, using available sources of information, among which, auditory feedback plays a major role. Manipulation of this feedback forces the speech monitoring system to refine its expectations for further actions. The present study hypothesizes that the duration of this refinement and the weight applied on different feedbacks loops would depend on the intended sounds to be produced, namely reading aloud versus singing. MATERIAL AND METHODS: We asked participants to sing "Happy Birthday" and read a paragraph of Harry Potter before and after experiencing pitch-shifted feedback. A detailed fundamental frequency (F0) analysis was conducted for each note in the song and each segment in the paragraph (at the level of a sentence, a word, or a vowel) to determine whether some aspects of F0 production changed in response to the pitch perturbations experienced during the adaptation paradigm. RESULTS: Our results showed that changes in the degree of F0-drift across the song or the paragraph was the metric that was the most consistent with a carry-over effect of adaptation, and in this regard, reading new material was more influenced by recent remapping than singing. CONCLUSION: The motor commands used by (normally-hearing) speakers are malleable via altered-feedback paradigms, perhaps more so when reading aloud than when singing. But these effects are not revealed through simple indicators such as an overall change in mean F0 or F0 range, but rather through subtle metrics, such as a drift of the voice pitch across the recordings.


Subject(s)
Singing , Voice , Humans , Feedback , Voice/physiology , Speech/physiology , Feedback, Sensory/physiology , Pitch Perception/physiology
7.
PLoS One ; 17(12): e0278506, 2022.
Article in English | MEDLINE | ID: mdl-36459511

ABSTRACT

There is an increasing interest in the field of audiology and speech communication to measure the effort that it takes to listen in noisy environments, with obvious implications for populations suffering from hearing loss. Pupillometry offers one avenue to make progress in this enterprise but important methodological questions remain to be addressed before such tools can serve practical applications. Typically, cocktail-party situations may occur in less-than-ideal lighting conditions, e.g. a pub or a restaurant, and it is unclear how robust pupil dynamics are to luminance changes. In this study, we first used a well-known paradigm where sentences were presented at different signal-to-noise ratios (SNR), all conducive of good intelligibility. This enabled us to replicate findings, e.g. a larger and later peak pupil dilation (PPD) at adverse SNR, or when the sentences were misunderstood, and to investigate the dependency of the PPD on sentence duration. A second experiment reiterated two of the SNR levels, 0 and +14 dB, but measured at 0, 75, and 220 lux. The results showed that the impact of luminance on the SNR effect was non-monotonic (sub-optimal in darkness or in bright light), and as such, there is no trivial way to derive pupillary metrics that are robust to differences in background light, posing considerable constraints for applications of pupillometry in daily life. Our findings raise an under-examined but crucial issue when designing and understanding listening effort studies using pupillometry, and offer important insights to future clinical application of pupillometry across sites.


Subject(s)
Pupil , Speech , Cognition , Auditory Perception , Signal-To-Noise Ratio
8.
Trends Hear ; 26: 23312165221120017, 2022.
Article in English | MEDLINE | ID: mdl-35983700

ABSTRACT

Cochlear implant (CI) users commonly report degraded musical sound quality. To improve CI-mediated music perception and enjoyment, we must understand factors that affect sound quality. In the present study, we utilize frequency response manipulation (FRM), a process that adjusts the energies of frequency bands within an audio signal, to determine its impact on CI-user sound quality assessments of musical stimuli. Thirty-three adult CI users completed an online study and listened to FRM-altered clips derived from the top songs in Billboard magazine. Participants assessed sound quality using the MUltiple Stimulus with Hidden Reference and Anchor for CI users (CI-MUSHRA) rating scale. FRM affected sound quality ratings (SQR). Specifically, increasing the gain for low and mid-range frequencies led to higher quality ratings than reducing them. In contrast, manipulating the gain for high frequencies (those above 2 kHz) had no impact. Participants with musical training were more sensitive to FRM than non-musically trained participants and demonstrated preference for gain increases over reductions. These findings suggest that, even among CI users, past musical training provides listeners with subtleties in musical appraisal, even though their hearing is now mediated electrically and bears little resemblance to their musical experience prior to implantation. Increased gain below 2 kHz may lead to higher sound quality than for equivalent reductions, perhaps because it offers greater access to lyrics in songs or because it provides more salient beat sensations.


Subject(s)
Cochlear Implantation , Cochlear Implants , Music , Adult , Auditory Perception/physiology , Humans , Sound
9.
Front Neurosci ; 16: 879583, 2022.
Article in English | MEDLINE | ID: mdl-35692416

ABSTRACT

Individuals with misophonia, a disorder involving extreme sound sensitivity, report significant anger, disgust, and anxiety in response to select but usually common sounds. While estimates of prevalence within certain populations such as college students have approached 20%, it is currently unknown what percentage of people experience misophonic responses to such "trigger" sounds. Furthermore, there is little understanding of the fundamental processes involved. In this study, we aimed to characterize the distribution of misophonic symptoms in a general population, as well as clarify whether the aversive emotional responses to trigger sounds are partly caused by acoustic salience of the sound itself, or by recognition of the sound. Using multi-talker babble as masking noise to decrease participants' ability to identify sounds, we assessed how identification of common trigger sounds related to subjective emotional responses in 300 adults who participated in an online study. Participants were asked to listen to and identify neutral, unpleasant and trigger sounds embedded in different levels of the masking noise (signal-to-noise ratios: -30, -20, -10, 0, +10 dB), and then to evaluate their subjective judgment of the sounds (pleasantness) and emotional reactions to them (anxiety, anger, and disgust). Using participants' scores on a scale quantifying misophonia sensitivity, we selected the top and bottom 20% scorers from the distribution to form a Most-Misophonic subgroup (N = 66) and Least-Misophonic subgroup (N = 68). Both groups were better at identifying triggers than unpleasant sounds, which themselves were identified better than neutral sounds. Both groups also recognized the aversiveness of the unpleasant and trigger sounds, yet for the Most-Misophonic group, there was a greater increase in subjective ratings of negative emotions once the sounds became identifiable, especially for trigger sounds. These results highlight the heightened salience of trigger sounds, but furthermore suggest that learning and higher-order evaluation of sounds play an important role in misophonia.

10.
Laryngoscope Investig Otolaryngol ; 7(1): 250-258, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35155805

ABSTRACT

OBJECTIVES: To explore the effects of obligatory lexical tone learning on speech emotion recognition and the cross-culture differences between United States and Taiwan for speech emotion understanding in children with cochlear implant. METHODS: This cohort study enrolled 60 cochlear-implanted (cCI) Mandarin-speaking, school-aged children who underwent cochlear implantation before 5 years of age and 53 normal-hearing children (cNH) in Taiwan. The emotion recognition and the sensitivity of fundamental frequency (F0) changes for those school-aged cNH and cCI (6-17 years old) were examined in a tertiary referred center. RESULTS: The mean emotion recognition score of the cNH group was significantly better than the cCI. Female speakers' vocal emotions are more easily to be recognized than male speakers' emotion. There was a significant effect of age at test on voice recognition performance. The average score of cCI with full-spectrum speech was close to the average score of cNH with eight-channel narrowband vocoder speech. The average performance of voice emotion recognition across speakers for cCI could be predicted by their sensitivity to changes in F0. CONCLUSIONS: Better pitch discrimination ability comes with better voice emotion recognition for Mandarin-speaking cCI. Besides the F0 cues, cCI are likely to adapt their voice emotion recognition by relying more on secondary cues such as intensity and duration. Although cross-culture differences exist for the acoustic features of voice emotion, Mandarin-speaking cCI and their English-speaking cCI peer expressed a positive effect for age at test on emotion recognition, suggesting the learning effect and brain plasticity. Therefore, further device/processor development to improve presentation of pitch information and more rehabilitative efforts are needed to improve the transmission and perception of voice emotion in Mandarin. LEVEL OF EVIDENCE: 3.

11.
Ear Hear ; 43(3): 862-873, 2022.
Article in English | MEDLINE | ID: mdl-34812791

ABSTRACT

OBJECTIVES: Variations in loudness are a fundamental component of the music listening experience. Cochlear implant (CI) processing, including amplitude compression, and a degraded auditory system may further degrade these loudness cues and decrease the enjoyment of music listening. This study aimed to identify optimal CI sound processor compression settings to improve music sound quality for CI users. DESIGN: Fourteen adult MED-EL CI recipients participated (Experiment No. 1: n = 17 ears; Experiment No. 2: n = 11 ears) in the study. A software application using a modified comparison category rating (CCR) test method allowed participants to compare and rate the sound quality of various CI compression settings while listening to 25 real-world music clips. The two compression settings studied were (1) Maplaw, which informs audibility and compression of soft level sounds, and (2) automatic gain control (AGC), which applies compression to loud sounds. For each experiment, one compression setting (Maplaw or AGC) was held at the default, while the other was varied according to the values available in the clinical CI programming software. Experiment No. 1 compared Maplaw settings of 500, 1000 (default), and 2000. Experiment No. 2 compared AGC settings of 2.5:1, 3:1 (default), and 3.5:1. RESULTS: In Experiment No. 1, the group preferred a higher Maplaw setting of 2000 over the default Maplaw setting of 1000 (p = 0.003) for music listening. There was no significant difference in music sound quality between the Maplaw setting of 500 and the default setting (p = 0.278). In Experiment No. 2, a main effect of AGC setting was found; however, no significant difference in sound quality ratings for pairwise comparisons were found between the experimental settings and the default setting (2.5:1 versus 3:1 at p = 0.546; 3.5:1 versus 3:1 at p = 0.059). CONCLUSIONS: CI users reported improvements in music sound quality with higher than default Maplaw or AGC settings. Thus, participants preferred slightly higher compression for music listening, with results having clinical implications for improving music perception in CI users.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Music , Adult , Auditory Perception , Deafness/rehabilitation , Humans , Sound
12.
Sci Rep ; 10(1): 16860, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033324

ABSTRACT

Monitoring voice pitch is a fine-tuned process in daily conversations as conveying accurately the linguistic and affective cues in a given utterance depends on the precise control of phonation and intonation. This monitoring is thought to depend on whether the error is treated as self-generated or externally-generated, resulting in either a correction or inflation of errors. The present study reports on two separate paradigms of adaptation to altered feedback to explore whether participants could behave in a more cohesive manner once the error is of comparable size perceptually. The vocal behavior of normal-hearing and fluent speakers was recorded in response to a personalized size of pitch shift versus a non-specific size, one semitone. The personalized size of shift was determined based on the just-noticeable difference in fundamental frequency (F0) of each participant's voice. Here we show that both tasks successfully demonstrated opposing responses to a constant and predictable F0 perturbation (on from the production onset) but these effects barely carried over once the feedback was back to normal, depicting a pattern that bears some resemblance to compensatory responses. Experiencing a F0 shift that is perceived as self-generated (because it was precisely just-noticeable) is not enough to force speakers to behave more consistently and more homogeneously in an opposing manner. On the contrary, our results suggest that the type of the response as well as the magnitude of the response do not depend in any trivial way on the sensitivity of participants to their own voice pitch. Based on this finding, we speculate that error correction could possibly occur even with a bionic ear, typically even when F0 cues are too subtle for cochlear implant users to detect accurately.


Subject(s)
Adaptation, Physiological/physiology , Feedback , Phonation/physiology , Pitch Perception/physiology , Voice/physiology , Acoustic Stimulation , Adult , Aged , Cochlear Implants , Cues , Female , Humans , Male , Middle Aged , Reaction Time , Young Adult
13.
Front Hum Neurosci ; 14: 18, 2020.
Article in English | MEDLINE | ID: mdl-32161525

ABSTRACT

Stuttering is a disorder that impacts the smooth flow of speech production and is associated with a deficit in sensorimotor integration. In a previous experiment, individuals who stutter were able to vocally compensate for pitch shifts in their auditory feedback, but they exhibited more variability in the timing of their corrective responses. In the current study, we focused on the neural correlates of the task using functional MRI. Participants produced a vowel sound in the scanner while hearing their own voice in real time through headphones. On some trials, the audio was shifted up or down in pitch, eliciting a corrective vocal response. Contrasting pitch-shifted vs. unshifted trials revealed bilateral superior temporal activation over all the participants. However, the groups differed in the activation of middle temporal gyrus and superior frontal gyrus [Brodmann area 10 (BA 10)], with individuals who stutter displaying deactivation while controls displayed activation. In addition to the standard univariate general linear modeling approach, we employed a data-driven technique (independent component analysis, or ICA) to separate task activity into functional networks. Among the networks most correlated with the experimental time course, there was a combined auditory-motor network in controls, but the two networks remained separable for individuals who stuttered. The decoupling of these networks may account for temporal variability in pitch compensation reported in our previous work, and supports the idea that neural network coherence is disturbed in the stuttering brain.

14.
Ear Hear ; 41(5): 1372-1382, 2020.
Article in English | MEDLINE | ID: mdl-32149924

ABSTRACT

OBJECTIVES: Cochlear implants (CIs) are remarkable in allowing individuals with severe to profound hearing loss to perceive speech. Despite these gains in speech understanding, however, CI users often struggle to perceive elements such as vocal emotion and prosody, as CIs are unable to transmit the spectro-temporal detail needed to decode affective cues. This issue becomes particularly important for children with CIs, but little is known about their emotional development. In a previous study, pediatric CI users showed deficits in voice emotion recognition with child-directed stimuli featuring exaggerated prosody. However, the large intersubject variability and differential developmental trajectory known in this population incited us to question the extent to which exaggerated prosody would facilitate performance in this task. Thus, the authors revisited the question with both adult-directed and child-directed stimuli. DESIGN: Vocal emotion recognition was measured using both child-directed (CDS) and adult-directed (ADS) speech conditions. Pediatric CI users, aged 7-19 years old, with no cognitive or visual impairments and who communicated through oral communication with English as the primary language participated in the experiment (n = 27). Stimuli comprised 12 sentences selected from the HINT database. The sentences were spoken by male and female talkers in a CDS or ADS manner, in each of the five target emotions (happy, sad, neutral, scared, and angry). The chosen sentences were semantically emotion-neutral. Percent correct emotion recognition scores were analyzed for each participant in each condition (CDS vs. ADS). Children also completed cognitive tests of nonverbal IQ and receptive vocabulary, while parents completed questionnaires of CI and hearing history. It was predicted that the reduced prosodic variations found in the ADS condition would result in lower vocal emotion recognition scores compared with the CDS condition. Moreover, it was hypothesized that cognitive factors, perceptual sensitivity to complex pitch changes, and elements of each child's hearing history may serve as predictors of performance on vocal emotion recognition. RESULTS: Consistent with our hypothesis, pediatric CI users scored higher on CDS compared with ADS speech stimuli, suggesting that speaking with an exaggerated prosody-akin to "motherese"-may be a viable way to convey emotional content. Significant talker effects were also observed in that higher scores were found for the female talker for both conditions. Multiple regression analysis showed that nonverbal IQ was a significant predictor of CDS emotion recognition scores while Years using CI was a significant predictor of ADS scores. Confusion matrix analyses revealed a dependence of results on specific emotions; for the CDS condition's female talker, participants had high sensitivity (d' scores) to happy and low sensitivity to the neutral sentences while for the ADS condition, low sensitivity was found for the scared sentences. CONCLUSIONS: In general, participants had higher vocal emotion recognition to the CDS condition which also had more variability in pitch and intensity and thus more exaggerated prosody, in comparison to the ADS condition. Results suggest that pediatric CI users struggle with vocal emotion perception in general, particularly to adult-directed speech. The authors believe these results have broad implications for understanding how CI users perceive emotions both from an auditory communication standpoint and a socio-developmental perspective.


Subject(s)
Cochlear Implantation , Cochlear Implants , Speech Perception , Adolescent , Adult , Child , Emotions , Female , Humans , Male , Speech , Young Adult
15.
Front Neurosci ; 13: 639, 2019.
Article in English | MEDLINE | ID: mdl-31281237

ABSTRACT

Purpose: This study examined the utilization of multiple types of acoustic information in lexical tone production and perception by pediatric cochlear implant (CI) recipients who are native speakers of Mandarin Chinese. Methods: Lexical tones were recorded from CI recipients and their peers with normal hearing (NH). Each participant was asked to produce a disyllabic word, yan jing, with which the first syllable was pronounced as Tone 3 (a low dipping tone) while the second syllable was pronounced as Tone 1 (a high level tone, meaning "eyes") or as Tone 4 (a high falling tone, meaning "eyeglasses"). In addition, a parametric manipulation in fundamental frequency (F0) and duration of Tones 1 and 4 used in a lexical tone recognition task in Peng et al. (2017) was adopted to evaluate the perceptual reliance on each dimension. Results: Mixed-effect analyses of duration, intensity, and F0 cues revealed that NH children focused exclusively on marking distinct F0 contours, while CI participants shortened Tone 4 or prolonged Tone 1 to enhance their contrast. In line with these production strategies, NH children relied primarily on F0 cues to identify the two tones, whereas CI children showed greater reliance on duration cues. Moreover, CI participants who placed greater perceptual weight on duration cues also tended to exhibit smaller changes in their F0 production. Conclusion: Pediatric CI recipients appear to contrast the secondary acoustic dimension (duration) in addition to F0 contours for both lexical tone production and perception. These findings suggest that perception and production strategies of lexical tones are well coupled in this pediatric CI population.

16.
Ann N Y Acad Sci ; 1449(1): 56-69, 2019 08.
Article in English | MEDLINE | ID: mdl-31144336

ABSTRACT

Speech timing deficits have been proposed as a causal factor in the disorder of stuttering. The question of whether individuals who stutter have deficits in nonspeech timing is one that has been revisited often, with conflicting results. Here, we uncover subtle differences in a manual metronome synchronization task that included tempo changes with adults who stutter and fluent speakers. We used sensitive circular statistics to examine both asynchrony and consistency in motor production. While both groups displayed a classic negative mean asynchrony (tapping before the beat), individuals who stutter anticipated the beat even more than their fluent peers, and their consistency was particularly affected at slow tempi. Surprisingly, individuals who stutter did not have problems with interval correction at tempo changes. We also examined the influence of music experience on synchronization behavior in both groups. While music perception and training were related to synchronization behavior in fluent participants, these correlations were not present for the stuttering group; however, one measure of stuttering severity (self-rated severity) was negatively correlated with music training. Overall, we found subtle differences in paced auditory-motor synchronization in individuals who stutter, consistent with a timing problem extending to nonspeech.


Subject(s)
Periodicity , Speech/physiology , Stuttering/pathology , Adult , Auditory Perception/physiology , Female , Humans , Male , Motor Activity/physiology , Music/psychology
17.
J Assoc Res Otolaryngol ; 20(3): 247-262, 2019 06.
Article in English | MEDLINE | ID: mdl-30815761

ABSTRACT

Cochlear implant (CI) biomechanical constraints result in impoverished spectral cues and poor frequency resolution, making it difficult for users to perceive pitch and timbre. There is emerging evidence that music training may improve CI-mediated music perception; however, much of the existing studies involve time-intensive and less readily accessible in-person music training paradigms, without rigorous experimental control paradigms. Online resources for auditory rehabilitation remain an untapped potential resource for CI users. Furthermore, establishing immediate value from an acute music training program may encourage CI users to adhere to post-implantation rehabilitation exercises. In this study, we evaluated the impact of an acute online music training program on pitch discrimination and timbre identification. Via a randomized controlled crossover study design, 20 CI users and 21 normal hearing (NH) adults were assigned to one of two arms. Arm-A underwent 1 month of online self-paced music training (intervention) followed by 1 month of audiobook listening (control). Arm-B underwent 1 month of audiobook listening followed by 1 month of music training. Pitch and timbre sensitivity scores were taken across three visits: (1) baseline, (2) after 1 month of intervention, and (3) after 1 month of control. We found that performance improved in pitch discrimination among CI users and NH listeners, with both online music training and audiobook listening. Music training, however, provided slightly greater benefit for instrument identification than audiobook listening. For both tasks, this improvement appears to be related to both fast stimulus learning as well as procedural learning. In conclusion, auditory training (with either acute participation in an online music training program or audiobook listening) may improve performance on untrained tasks of pitch discrimination and timbre identification. These findings demonstrate a potential role for music training in perceptual auditory appraisal of complex stimuli. Furthermore, this study highlights the importance and the need for more tightly controlled training studies in order to accurately evaluate the impact of rehabilitation training protocols on auditory processing.


Subject(s)
Cochlear Implants , Music Therapy , Music , Pitch Discrimination , Adult , Aged , Aged, 80 and over , Cross-Over Studies , Humans , Middle Aged , Young Adult
18.
J Acoust Soc Am ; 145(2): 847, 2019 02.
Article in English | MEDLINE | ID: mdl-30823786

ABSTRACT

In cocktail-party situations, listeners can use the fundamental frequency (F0) of a voice to segregate it from competitors, but other cues in speech could help, such as co-modulation of envelopes across frequency or more complex cues related to the semantic/syntactic content of the utterances. For simplicity, this (non-pitch) form of grouping is referred to as "articulatory." By creating a new type of speech with two steady F0s, it was examined how these two forms of segregation compete: articulatory grouping would bind the partials of a double-F0 source together, whereas harmonic segregation would tend to split them in two subsets. In experiment 1, maskers were two same-male sentences. Speech reception thresholds were high in this task (vicinity of 0 dB), and harmonic segregation behaved as though double-F0 stimuli were two independent sources. This was not the case in experiment 2, where maskers were speech-shaped complexes (buzzes). First, double-F0 targets were immune to the masking of a single-F0 buzz matching one of the two target F0s. Second, double-F0 buzzes were particularly effective at masking a single-F0 target matching one of the two buzz F0s. As a conclusion, the strength of F0-segregation appears to depend on whether the masker is speech or not.

19.
Ear Hear ; 40(5): 1197-1209, 2019.
Article in English | MEDLINE | ID: mdl-30762600

ABSTRACT

OBJECTIVE: Cochlear implants (CIs) restore a sense of hearing in deaf individuals. However, they do not transmit the acoustic signal with sufficient fidelity, leading to difficulties in recognizing emotions in voice and in music. The study aimed to explore the neurophysiological bases of these limitations. DESIGN: Twenty-two adults (18 to 70 years old) with CIs and 22 age-matched controls with normal hearing participated. Event-related potentials (ERPs) were recorded in response to emotional bursts (happy, sad, or neutral) produced in each modality (voice or music) that were for the most part correctly identified behaviorally. RESULTS: Compared to controls, the N1 and P2 components were attenuated and prolonged in CI users. To a smaller degree, N1 and P2 were also attenuated and prolonged in music compared to voice, in both populations. The N1-P2 complex was emotion-dependent (e.g., reduced and prolonged response to sadness), but this was also true in both populations. In contrast, the later portion of the response, between 600 and 850 ms, differentiated happy and sad from neutral stimuli in normal hearing but not in CI listeners. CONCLUSIONS: The early portion of the ERP waveform reflected primarily the general reduction in sensory encoding by CI users (largely due to CI processing itself), whereas altered emotional processing (by CI users) could be found in the later portion of the ERP and extended beyond the realm of speech.


Subject(s)
Deafness/rehabilitation , Emotions , Evoked Potentials, Auditory/physiology , Music , Speech Perception , Adolescent , Adult , Aged , Cochlear Implants , Deafness/physiopathology , Deafness/psychology , Electroencephalography , Evoked Potentials , Female , Humans , Male , Middle Aged , Perception , Voice , Young Adult
20.
Sci Rep ; 9(1): 109, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643156

ABSTRACT

In tonal languages, voice pitch inflections change the meaning of words, such that the brain processes pitch not merely as an acoustic characterization of sound but as semantic information. In normally-hearing (NH) adults, this linguistic pressure on pitch appears to sharpen its neural encoding and can lead to perceptual benefits, depending on the task relevance, potentially generalizing outside of the speech domain. In children, however, linguistic systems are still malleable, meaning that their encoding of voice pitch information might not receive as much neural specialization but might generalize more easily to ecologically irrelevant pitch contours. This would seem particularly true for early-deafened children wearing a cochlear implant (CI), who must exhibit great adaptability to unfamiliar sounds as their sense of pitch is severely degraded. Here, we provide the first demonstration of a tonal language benefit in dynamic pitch sensitivity among NH children (using both a sweep discrimination and labelling task) which extends partially to children with CI (i.e., in the labelling task only). Strong age effects suggest that sensitivity to pitch contours reaches adult-like levels early in tonal language speakers (possibly before 6 years of age) but continues to develop in non-tonal language speakers well into the teenage years. Overall, we conclude that language-dependent neuroplasticity can enhance behavioral sensitivity to dynamic pitch, even in extreme cases of auditory degradation, but it is most easily observable early in life.


Subject(s)
Cochlear Implants , Hearing , Language , Pitch Discrimination , Pitch Perception , Adolescent , Behavior , Child , Humans , Neuronal Plasticity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...