Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 191(12): 3832-41, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19376860

ABSTRACT

The segrosome is the nucleoprotein complex that mediates accurate plasmid segregation. In addition to its multifunctional role in segrosome assembly, the ParG protein of multiresistance plasmid TP228 is a transcriptional repressor of the parFG partition genes. ParG is a homodimeric DNA binding protein, with C-terminal regions that interlock into a ribbon-helix-helix fold. Antiparallel beta-strands in this fold are presumed to insert into the O(F) operator major groove to exert transcriptional control as established for other ribbon-helix-helix factors. The O(F) locus comprises eight degenerate tetramer boxes arranged in a combination of direct and inverted orientation. Each tetramer motif likely recruits one ParG dimer, implying that the fully bound operator is cooperatively coated by up to eight dimers. O(F) was subdivided experimentally into four overlapping 20-bp sites (A to D), each of which comprises two tetramer boxes separated by AT-rich spacers. Extensive interaction studies demonstrated that sites A to D individually are bound with different affinities by ParG (C > A approximately B >> D). Moreover, comprehensive scanning mutagenesis revealed the contribution of each position in the site core and flanking sequences to ParG binding. Natural variations in the tetramer box motifs and in the interbox spacers, as well as in flanking sequences, each influence ParG binding. The O(F) operator apparently has evolved with sites that bind ParG dissimilarly to produce a nucleoprotein complex fine-tuned for optimal interaction with the transcription machinery. The association of other ribbon-helix-helix proteins with complex recognition sites similarly may be modulated by natural sequence variations between subsites.


Subject(s)
DNA, Bacterial/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Plasmids/genetics , Repressor Proteins/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Base Sequence , Binding Sites , DNA, Bacterial/chemistry , Escherichia coli/chemistry , Escherichia coli/cytology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Molecular Sequence Data , Mutation , Operator Regions, Genetic , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Alignment
2.
Proc Natl Acad Sci U S A ; 105(6): 2151-6, 2008 Feb 12.
Article in English | MEDLINE | ID: mdl-18245388

ABSTRACT

Multidrug-resistant variants of the opportunistic human pathogen Enterococcus have recently emerged as leading agents of nosocomial infection. The acquisition of plasmid-borne resistance genes is a driving force in antibiotic-resistance evolution in enterococci. The segregation locus of a high-level gentamicin-resistance plasmid, pGENT, in Enterococcus faecium was identified and dissected. This locus includes overlapping genes encoding PrgP, a member of the ParA superfamily of segregation proteins, and PrgO, a site-specific DNA binding homodimer that recognizes the cenE centromere upstream of prgPO. The centromere has a distinctive organization comprising three subsites, CESII separates CESI and CESIII, each of which harbors seven TATA boxes spaced by half-helical turns. PrgO independently binds both CESI and CESIII, but with different affinities. The topography of the complex was probed by atomic force microscopy, revealing discrete PrgO foci positioned asymmetrically at the CESI and CESIII subsites. Bending analysis demonstrated that cenE is intrinsically curved. The organization of the cenE site and of certain other plasmid centromeres mirrors that of yeast centromeres, which may reflect a common architectural requirement during assembly of the mitotic apparatus in yeast and bacteria. Moreover, segregation modules homologous to that of pGENT are widely disseminated on vancomycin and other resistance plasmids in enterococci. An improved understanding of segrosome assembly may highlight new interventions geared toward combating antibiotic resistance in these insidious pathogens.


Subject(s)
Centromere , Drug Resistance, Microbial/genetics , Drug Resistance, Multiple/genetics , Enterococcus faecium/genetics , Genes, Bacterial , Molecular Sequence Data
3.
J Biol Chem ; 280(31): 28683-91, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-15951570

ABSTRACT

ParG is the prototype of a group of small (<10 kDa) proteins involved in accurate plasmid segregation. The protein is a dimeric DNA binding factor, which consists of symmetric paired C-terminal domains that interleave into a ribbon-helix-helix fold that is crucial for the interaction with DNA, and unstructured N-terminal domains of previously unknown function. Here the ParG protein is shown to be a transcriptional repressor of the parFG genes. The protein assembles on its operator site initially as a tetramer (dimer of dimers) and, at elevated protein concentrations, as a pair of tetramers. Progressive deletion of the mobile N-terminal tails concomitantly decreased transcriptional repression by ParG and perturbed the DNA binding kinetics of the protein. The flexible tails are not necessary for ParG dimerization but instead modulate the organization of a higher order nucleoprotein complex that is crucial for proper transcriptional repression. This is achieved by transient associations between the flexible and folded domains in complex with the target DNA. Numerous ParG homologs encoded by plasmids of Gram-negative bacteria similarly are predicted to possess N-terminal disordered tails, suggesting that this is a common feature of partition operon autoregulation. The results provide new insights into the role of natively unfolded domains in protein function, the molecular mechanisms of transcription regulation, and the control of plasmid segregation.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Plasmids/genetics , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcription, Genetic , Base Sequence , DNA Mutational Analysis , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Kinetics , Molecular Sequence Data , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...