Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 266(Suppl 1): 149-159, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31230115

ABSTRACT

A growing number of studies indicate that cognitive complaints are common in patients with peripheral vestibular disorders. A better understanding of how vestibular disorders influence cognition in these patients requires a clear delineation of the cognitive domains affected by vestibular disorders. Here, we compared the consequences of left and right vestibular neurectomy on third-person perspective taking-a visuo-spatial task requiring mainly own-body mental imagery, and on 3D objects mental rotation imagery-requiring object-based mental imagery, but no perspective taking. Patients tested 1 week after a unilateral vestibular neurectomy and a group of age- and gender-matched healthy participants played a virtual ball-tossing game from their own first-person perspective (1PP) and from the perspective of a distant avatar (third-person perspective, 3PP). Results showed larger response times in the patients with respect to their controls for the 3PP taking task, but not for the 1PP task and the 3D objects mental imagery. In addition, we found that only patients with left vestibular neurectomy presented altered 3PP taking abilities when compared to their controls. This study suggests that unilateral vestibular loss affects mainly own-body mental transformation and that only left vestibular loss seems to impair this cognitive process. Our study also brings further evidence that vestibular signals contribute to the sensorimotor bases of social cognition and strengthens the connections between the so far distinct fields of social neuroscience and human vestibular physiology.


Subject(s)
Cognition/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Space Perception/physiology , Vestibular Diseases/diagnosis , Vestibule, Labyrinth/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Vestibular Diseases/physiopathology , Vestibular Diseases/surgery
2.
PLoS One ; 12(1): e0170488, 2017.
Article in English | MEDLINE | ID: mdl-28107424

ABSTRACT

Recent findings suggest that vestibular information plays a significant role in anchoring the self to the body. Out-of-body experiences of neurological origin are frequently associated with vestibular sensations, and galvanic vestibular stimulation in healthy participants anchors the self to the body. Here, we provide the first objective measures of anchoring the self to the body in chronic bilateral vestibular failure (BVF). We compared 23 patients with idiopathic BVF to 23 healthy participants in a series of experiments addressing several aspects of visuo-spatial perspective taking and embodiment. In Experiment 1, participants were involved in a virtual "dot-counting task" from their own perspective or the perspective of a distant avatar, to measure implicit and explicit perspective taking, respectively. In both groups, response times increased similarly when the avatar's and participant's viewpoint differed, for both implicit and explicit perspective taking. In Experiment 2, participants named ambiguous letters (such as "b" or "q") traced on their forehead that could be perceived from an internal or external perspective. The frequency of perceiving ambiguous letters from an internal perspective was similar in both groups. In Experiment 3, participants completed a questionnaire measuring the experienced self/body and self/environment "closeness". Both groups reported a similar embodied experience. Altogether, our data show that idiopathic BVF does not change implicit and explicit perspective taking nor subjective anchoring of the self to the body. Our negative findings offer insight into the multisensory mechanisms of embodiment. Only acute peripheral vestibular disorders and neurological disorders in vestibular brain areas (characterized by strong multisensory conflicts) may evoke disembodied experiences.


Subject(s)
Bilateral Vestibulopathy/physiopathology , Proprioception/physiology , Case-Control Studies , Electric Stimulation , Female , Humans , Male , Middle Aged , Photic Stimulation , Psychomotor Performance , Touch Perception , Visual Perception
3.
Neuropsychologia ; 79(Pt B): 175-85, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26311354

ABSTRACT

Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking. Yet, no study merged natural full-body vestibular stimulations and explicit visuo-spatial perspective taking tasks in virtual environments. In Experiment 1, we combined natural vestibular stimulation on a rotatory chair with virtual reality to test how vestibular signals are processed to simulate the viewpoint of a distant avatar. While they were rotated, participants tossed a ball to a virtual character from the viewpoint of a distant avatar. Our results showed that vestibular signals influence perspective taking in a direction-specific way: participants were faster when their physical body rotated in the same direction as the mental rotation needed to take the avatar's viewpoint. In Experiment 2, participants realized 3D object mental rotations, which did not involve perspective taking, during the same whole-body vestibular stimulation. Our results demonstrated that vestibular stimulation did not affect 3D object mental rotations. Altogether, these data indicate that vestibular signals have a direction-specific influence on visuo-spatial perspective taking (self-centered mental imagery), but not a general effect on mental imagery. Findings from this study suggest that vestibular signals contribute to one of the most crucial mechanisms of social cognition: understanding others' actions.


Subject(s)
Imagination/physiology , Space Perception/physiology , Vestibule, Labyrinth/physiology , Visual Perception/physiology , Acceleration , Adult , Analysis of Variance , Female , Humans , Male , Photic Stimulation , Reaction Time/physiology , Rotation , Surveys and Questionnaires , User-Computer Interface , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...