Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(20): e202303060, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37021794

ABSTRACT

External diffusion may be exploited as a tool to purify materials in a way thought to be inaccessible from a chemical reactivity point of view. A mixture of two carbonaceous materials, graphite and carbon black, are thermally oxidized in either i) outside total diffusion-limited regime or ii) total diffusion-limited regime. Depending on the treatment applied it is possible to purify either graphite, a trivial task, or carbon black, a task thought impossible. Introducing geometrical selectivity, controlled total diffusion-limited chemistry exceeds by far the field of carbon materials and can be used as an engineering tool for many materials purification, original synthesis, or to introduce asymmetry in a system. Several examples for direct applications of the findings are mentioned.

2.
Chemistry ; 28(54): e202200117, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35638155

ABSTRACT

Combustion is arguably as old as homo sapiens ability to observe and use fire. Despite the long tradition of using carbon combustion for energy production, this reaction is still not fully understood. This can be related to several facts that are intertwined and complicate the investigation, such as the large variety of possible carbon structures, the actual surface structure, porosity, the solid-gas nature of this reaction, diffusion limitation and fundamental reaction steps. In this review, a brief history of carbon combustion science is given, followed by a detailed discussion of the most important aspects of carbon combustion. Special attention is given to limitations for example diffusion. In carbon combustion, kinetic control can rarely be observed. The literature of the fundamental reaction steps actually occurring on the carbon framework is reviewed and it becomes apparent that the reaction is occurring primarily on defects on the basal plane. Thus, the reaction between oxygen and carbon may be used as an analytical tool to provide further insights into novel materials, for example synthetic carbon materials, fibres and graphene type materials. Mastering the combustion reaction in all its complexity may prove to be very valuable in the future.

3.
Angew Chem Int Ed Engl ; 58(45): 16013-16017, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31269289

ABSTRACT

Kinetic data, for example, activation energy and reaction order, are crucial for the understanding of chemical reactions and processes. Here, we describe a novel method for obtaining kinetic data based on thermogravimetric measurements (TGA) that exploits in each measurement multiple successive isothermal steps (SIS). We applied this method to the notoriously challenging carbon combustion process for vastly different carbons for oxygen molar fractions between 1.4 % and 90 %. Our obtained apparent EA values are within the wide range of results in the literature and vary in a systematic way with the oxygen partial pressure. The improved accuracy and large amount of obtainable data allowed us to show that the majority of experimentally obtained apparent data for apparent EA are neither in a kinetic regime nor in a diffusion-controlled one but rather in a transition regime.

4.
ACS Nano ; 12(8): 8606-8615, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30088916

ABSTRACT

The main hurdle preventing the widespread use of single-walled carbon nanotubes remains the lack of methods with which to produce formulations of pristine, unshortened, unfunctionalized, individualized single-walled carbon nanotubes, thus preserving their extraordinary properties. In particular, sonication leads to shortening, which is detrimental to percolation properties (electrical, thermal, mechanical, etc.). Using reductive dissolution and transfer into degassed water, open-ended, water-filled nanotubes can be dispersed as individualized nanotubes in water-dimethyl sulfoxide mixtures, avoiding the use of sonication and surfactant. Closed nanotubes, however, aggregate immediately upon contact with water. Photoluminescence and absorption spectroscopy both point out a very high degree of individualization while retaining lengths of several microns. The resulting transparent conducting films are 1 order of magnitude more conductive than surfactant-based blanks at equal transmittance.

5.
ACS Omega ; 3(2): 1367-1373, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-31458465

ABSTRACT

Environmentally friendly multifunctional rubber composites are reported. Graphitic nanocarbon (NC) deriving from cracking of biogas (methane/carbon dioxide) and natural rubber extracted directly from the Hevea brasiliensis tree are the two components of these composites produced via latex technology. While maintaining and enhancing the intrinsic thermal and mechanical characteristics of rubber, the presence of NC shows a significant improvement on the electrical response. For a 10 wt % NC content, a 1010-fold increase in conductivity has been achieved with a conductivity value of 7.5 S·m-1, placing these composites among the best obtained using other carbon fillers. In addition, the piezoresistive behavior has also been verified. These promising green composites have a potential use in a variety of applications such as sealing of electronic devices and sensors.

6.
Bioresour Technol ; 243: 1227-1231, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28705423

ABSTRACT

Novel carbon nanotube based electrodes of microbial fuel cells (MFC) have been developed. MFC is a promising technology for the wastewater treatment and the production of electrical energy from redox reactions of natural substrates. Performances of such bio-electrochemical systems depend critically on the structure and properties of the electrodes. The presently developed materials are made by weaving fibers solely comprised of carbon nanotubes. They exhibit a large scale porosity controlled by the weaving process. This porosity allows an easy colonization by electroactive bacteria. In addition, the fibers display a nanostructuration that promotes excellent growth and adhesion of the bacteria at the surface of the electrodes. This unique combination of large scale porosity and nanostructuration allows the present electrodes to perform better than carbon reference. When used as anode in a bioelectrochemical reactor in presence of Geobacter sulfurreducens bacteria, the present electrodes show a maximal current density of about 7.5mA/cm2.


Subject(s)
Bioelectric Energy Sources , Nanotubes, Carbon , Electricity , Electrodes , Geobacter
7.
Phys Chem Chem Phys ; 12(34): 9993-5, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20623074

ABSTRACT

The detection of dopamine is a scientific challenge of great importance for the understanding of neurobiological dysfunctions. However the presence of ascorbic acid at concentrations several times higher than that of dopamine and its oxidation at a very similar potential make a selective electrochemical detection difficult. Here we report the original and intrinsic selectivity of carbon nanotube (CNT) fiber microelectrodes (CNTFM) towards dopamine oxidation without significant interaction from ascorbic acid.


Subject(s)
Ascorbic Acid/analysis , Dopamine/analysis , Nanotubes, Carbon/chemistry , Ascorbic Acid/chemistry , Dopamine/chemistry , Electrochemistry , Microelectrodes
8.
Small ; 4(10): 1806-12, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18844300

ABSTRACT

Onion-type multilamellar vesicles are made of concentric bilayers of organic surfactant and are mainly known for their potential applications in biotechnology. They can be used as microreactors for the spontaneous and controlled production of metal nanoparticles. This process does not require any thermal treatment and, hence, it is also attractive for material sciences such as heterogeneous catalysis. In this paper, silver-nanoparticle-based catalysts are prepared by transferring onion-grown silver nanoparticles onto inorganic supports. The resulting materials are active in the total oxidation of benzene, attesting that this novel bio-inspired concept is promising in inorganic catalysis.


Subject(s)
Metal Nanoparticles/chemistry , Nanotechnology/methods , Onions/metabolism , Benzene , Catalysis , Diffusion , Metal Nanoparticles/ultrastructure , Onions/ultrastructure , Spectrophotometry, Atomic , Thermogravimetry , Titanium/metabolism
9.
Nanotechnology ; 19(32): 325501, 2008 Aug 13.
Article in English | MEDLINE | ID: mdl-21828813

ABSTRACT

Oxidized multiwalled carbon nanotube (oxidized-MWNT)/polyvinyl alcohol (PVA) composite sheets have been prepared for electromechanical actuator applications. MWNT have been oxidized by nitric acid treatments. They were then dispersed in water and mixed with various amounts of PVA of high molecular weight (198 000 g mol(-1)). The composite sheets were then obtained through a membrane filtration process. The composition of the systems has been optimized to combine suitable mechanical and electrical properties. Thermogravimetric analysis, mechanical tensile tests and conductivity measurements show that the best compromise of mechanical and electrical properties was obtained for a PVA weight fraction of about 30 wt%. In addition, one face of the sheets was coated with gold to increase the conductivity of the sheets and promote uniform actuation. Pseudo-bimorph devices have been realized by subsequently coating the composite sheets with an inert layer of PVA. The devices have been tested electromechanically in a liquid electrolyte (tetrabutylammonium/tetrafluoroborate (TBA/TFB) in acetonitrile) at constant frequency and different applied voltages, from 2 to 10 V. Measurements of the bimorph deflections were used to determine the stress generated by the nanotube-PVA sheets. The results show that the stress generated increases with increasing amplitude of the applied voltage and can reach 1.8 MPa. This value compares well with and even exceeds the stress generated by recently obtained bimorphs made of gold nanoparticles.

10.
Science ; 318(5854): 1294-6, 2007 Nov 23.
Article in English | MEDLINE | ID: mdl-18033882

ABSTRACT

Shape-memory polymers can revert to their original shape when they are reheated. The stress generated by shape recovery is a growing function of the energy absorbed during deformation at a high temperature; thus, high energy to failure is a necessary condition for strong shape-memory materials. We report on the properties of composite nanotube fibers that exhibit this particular feature. We observed that these composites can generate a stress upon shape recovery up to two orders of magnitude greater than that generated by conventional polymers. In addition, the nanoparticles induce a broadening of the glass transition and a temperature memory with a peak of recovery stress at the temperature of their initial deformation.

11.
Anal Bioanal Chem ; 389(2): 499-505, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17653701

ABSTRACT

The preparation and interesting electrochemical properties of carbon nanotube (CNT) fiber microelectrodes are reported. By combining the advantages of CNT with those of fiber electrodes, this type of microelectrode differs from CNT-modified or CNT-containing composite electrodes, because they are made solely of CNT without other components, for example additives or binders. The performance of these electrodes has been characterized with regard to, among others, the electrocatalytic oxidation of analytes via dehydrogenase-mediated reactions. In this context the reversible regeneration of the coenzyme NAD(+) using a mediator is a key step in the development of new amperometric sensor devices and we have successfully immobilized mediator molecules that are very efficient for this purpose on the surface of the CNT fiber electrode. The microelectrodes thus obtained have been compared with classic carbon microelectrodes and have promising behavior in biosensing applications, especially after specific pretreatments such as CNT alignment inside the fiber or expansion of the specific surface by chemically induced swelling.


Subject(s)
Microelectrodes , Nanotubes, Carbon , Catalysis , Glucose/analysis , NAD/chemistry , Oxidation-Reduction
12.
J Nanosci Nanotechnol ; 7(10): 3373-7, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18330143

ABSTRACT

We report on the preparation and interesting electrochemical behavior of carbon nanotube fiber microelectrodes (CNTFM). By combining the advantages of carbon nanotubes (CNT) with those of fiber electrodes, this type of microelectrode differs from CNT modified or CNT containing composite electrodes, because it's made of only CNT without any other components like additives or binders. The active CNT surface is easily regenerated. The performance of CNTFMs has been characterized, among others, by surface modification with phosphomolybdic acid. It is shown that adsorption behavior of these catalyst molecules is highly improved with a controlled orientation of CNT. A better CNT alignment inside the fiber can be achieved by a hot stretching procedure.


Subject(s)
Crystallization/methods , Electrochemistry/instrumentation , Electrochemistry/methods , Microelectrodes , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Electric Impedance , Equipment Design , Equipment Failure Analysis , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
13.
J Nanosci Nanotechnol ; 7(10): 3509-13, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18330165

ABSTRACT

Organometallic reagents such as butyllithium are known to covalently functionalize the sidewalls of carbon nanotubes. The function grafted corresponds to the organic part of the alkali compound, while one negative charge is transferred to the nanotube for each function. Carbon nanotubes reduced by organolithium compounds were used here as nucleophilic reactive species through these transferred and delocalized charges. Various halogenated electrophiles in excess were reacted with them in anhydrous conditions. The grafting of the corresponding chemical function onto the carbon nanotubes through a Lewis metathetic exchange reaction was demonstrated by chemical, thermal, and spectroscopic analyses. This synthetic route applied successfully to both single-walled and multi-walled nanotubes and to a series of electrophiles. The extent of functionalization was found to depend on stoechiometries used, although a direct correlation could not be obtained.


Subject(s)
Crystallization/methods , Electrochemistry/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Organometallic Compounds/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Oxidation-Reduction , Particle Size , Surface Properties
14.
J Am Chem Soc ; 127(1): 8-9, 2005 Jan 12.
Article in English | MEDLINE | ID: mdl-15631422

ABSTRACT

Upon reduction with alkali metals, single-wall carbon nanotubes (SWNTS) are shown to form polyelectrolyte salts that are soluble in polar organic solvents without any sonication, use of surfactants, or functionalization whatsoever, thus forming true thermodynamically stable solutions of naked SWNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...