Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15652, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28585545

ABSTRACT

Type 2 diabetes (T2D) is characterized by insulin resistance and impaired insulin secretion, but the mechanisms underlying insulin secretion failure are not completely understood. Here, we show that a set of co-expressed genes, which is enriched for genes with islet-selective open chromatin, is associated with T2D. These genes are perturbed in T2D and have a similar expression pattern to that of dedifferentiated islets. We identify Sox5 as a regulator of the module. Sox5 knockdown induces gene expression changes similar to those observed in T2D and diabetic animals and has profound effects on insulin secretion, including reduced depolarization-evoked Ca2+-influx and ß-cell exocytosis. SOX5 overexpression reverses the expression perturbations observed in a mouse model of T2D, increases the expression of key ß-cell genes and improves glucose-stimulated insulin secretion in human islets from donors with T2D. We suggest that human islets in T2D display changes reminiscent of dedifferentiation and highlight SOX5 as a regulator of ß-cell phenotype and function.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , SOXD Transcription Factors/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Chromatin/metabolism , Exocytosis , Female , Gene Expression Regulation , Humans , Insulin/metabolism , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Phenotype , Phlorhizin/chemistry , RNA, Small Interfering/metabolism , Rats , Valproic Acid/chemistry
2.
Gut ; 50(6): 812-20, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12010883

ABSTRACT

BACKGROUND AND AIMS: Persistent inflammation observed in inflammatory bowel disease may be the consequence of an increased or aberrant immune response to normal gut constituents or an overall immune dysregulation and imbalance. Cytokines play an important role in immune regulation and interleukin 18 (IL-18) is one such cytokine that has emerged as being instrumental in driving CD4+ T cell responses towards a Th1-type. IL-18 can also directly mediate inflammation, moderate interleukin 1 activity, and can act on cell types other than T cells. It has been reported recently that IL-18 mRNA and protein are upregulated in gut tissue from IBD patients. The aim of this study was to understand more about the role of IL-18 in contributing to the pathology of IBD and to assess whether blocking IL-18 activity may be of therapeutic benefit as a treatment regimen for IBD. METHODS: Mice with dextran sulphate sodium (DSS) induced colitis were treated with recombinant IL-18 binding protein (IL-18bp.Fc), a soluble protein that blocks IL-18 bioactivity. Histopathological analysis was performed and RNA from the large intestine was analysed using the RNase protection assay and gene arrays. RESULTS: IL-18 RNA levels increased very early in the colon during DSS colitis. Treatment of mice with IL-18bp.Fc inhibited IBD associated weight loss and significantly inhibited the intestinal inflammation induced by DSS. IL-18bp.Fc treatment also attenuated mRNA upregulation of multiple proinflammatory cytokine genes, chemokine genes, and matrix metalloprotease genes in the large intestine that are commonly elevated during IBD. CONCLUSIONS: IL-18bp treatment attenuated inflammation during DSS induced colitis in mice. Neutralising IL-18 activity may therefore be of benefit for ameliorating the inflammation associated with human intestinal diseases.


Subject(s)
Colitis, Ulcerative/chemically induced , Dextran Sulfate/adverse effects , Glycoproteins/pharmacology , Interleukin-18/antagonists & inhibitors , Animals , Colitis, Ulcerative/pathology , Cytokines/metabolism , Female , Immunohistochemistry/methods , Intercellular Signaling Peptides and Proteins , Interleukin-18/physiology , Lymph Nodes/physiology , Mesentery , Mice , Mice, Inbred C57BL , RNA/metabolism , Up-Regulation , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...