Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur Radiol ; 30(6): 3334-3345, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32072257

ABSTRACT

OBJECTIVES: This study compared the accuracy of an automated, vessel-specific minimum cost path (MCP) myocardial perfusion territory assignment technique as compared with the standard American Heart Association 17-segment (AHA) model. METHODS: Six swine (42 ± 9 kg) were used to evaluate the accuracy of the MCP technique and the AHA method. In each swine, a dynamic acquisition, comprised of twenty consecutive whole heart volume scans, was acquired with a computed tomography scanner, following peripheral injection of contrast material. From this acquisition, MCP and AHA perfusion territories were determined, for the left (LCA) and right (RCA) coronary arteries. Each animal underwent additional dynamic acquisitions, consisting of twenty consecutive volume scans, following direct intracoronary contrast injection into the LCA or RCA. These images were used as the reference standard (REF) LCA and RCA perfusion territories. The MCP and AHA techniques' perfusion territories were then quantitatively compared with the REF perfusion territories. RESULTS: The myocardial mass of MCP perfusion territories (MMCP) was related to the mass of reference standard perfusion territories (MREF) by MMCP = 0.99MREF + 0.39 g (r = 1.00; R2 = 1.00). The mass of AHA perfusion territories (MAHA) was related to MREF by MAHA = 0.81MREF + 5.03 g (r = 0.99; R2 = 0.98). CONCLUSION: The vessel-specific MCP myocardial perfusion territory assignment technique more accurately quantifies LCA and RCA perfusion territories as compared with the current standard AHA 17-segment model. Therefore, it can potentially provide a more comprehensive and patient-specific evaluation of coronary artery disease. KEY POINTS: • The minimum cost path (MCP) technique accurately determines left and right coronary artery perfusion territories, as compared with the American Heart Association 17-segment (AHA) model. • The minimum cost path (MCP) technique could be applied to cardiac computed-tomography angiography images to accurately determine patient-specific left and right coronary artery perfusion territories. • The American Heart Association 17-segment (AHA) model often fails to accurately determine left and right coronary artery perfusion territories, especially in the inferior and inferoseptal walls of the left ventricular myocardium.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnosis , Coronary Circulation/physiology , Coronary Vessels/diagnostic imaging , Myocardial Perfusion Imaging/methods , American Heart Association , Animals , Coronary Artery Disease/physiopathology , Coronary Vessels/physiopathology , Disease Models, Animal , Swine , United States
2.
J Cardiovasc Comput Tomogr ; 12(5): 425-435, 2018.
Article in English | MEDLINE | ID: mdl-30042078

ABSTRACT

BACKGROUND: As combined morphological and physiological assessment of coronary artery disease (CAD) is necessary to reliably resolve CAD severity, the objective of this study was to validate an automated minimum-cost path assignment (MCP) technique which enables accurate, vessel-specific assignment of the left (LCA) and right (RCA) coronary perfusion territories using computed tomography (CT) angiography data for both left and right ventricles. METHODS: Six swine were used to validate the MCP technique. In each swine, a dynamic acquisition comprised of twenty consecutive volume scans was acquired with a 320-slice CT scanner following peripheral injection of contrast material. From this acquisition the MCP technique was used to automatically assign LCA and RCA perfusion territories for the left and right ventricles, independently. Each animal underwent another dynamic CT acquisition following direct injection of contrast material into the LCA or RCA. Using this acquisition, reference standard LCA and RCA perfusion territories were isolated from the myocardial blush. The accuracy of the MCP technique was evaluated by quantitatively comparing the MCP-derived LCA and RCA perfusion territories to these reference standard territories. RESULTS: All MCP perfusion territory masses (MassMCP) and all reference standard perfusion territory masses (MassRS) in the left ventricle were related by MassMCP = 0.99MassRS+0.35 g (r = 1.00). MassMCP and MassRS in the right ventricle were related by MassMCP = 0.94MassRS+0.39 g (r = 0.96). CONCLUSION: The MCP technique was validated in a swine animal model and has the potential to be used for accurate, vessel-specific assignment of LCA and RCA perfusion territories in both the left and right ventricular myocardium using CT angiography data.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Circulation , Coronary Stenosis/diagnostic imaging , Coronary Vessels/diagnostic imaging , Multidetector Computed Tomography/methods , Myocardial Perfusion Imaging/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Animals , Computer Simulation , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Male , Models, Animal , Predictive Value of Tests , Reproducibility of Results , Sus scrofa
3.
Radiology ; 286(1): 93-102, 2018 01.
Article in English | MEDLINE | ID: mdl-29059038

ABSTRACT

Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (PFPA and PMSM) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (PMICRO), as follows: PFPA_COMBINED = 1.02 PMICRO_COMBINED + 0.11 (r = 0.96) and PMSM_COMBINED = 0.28 PMICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Myocardial Perfusion Imaging/methods , Tomography, X-Ray Computed/methods , Animals , Area Under Curve , Blood Pressure/physiology , Disease Models, Animal , Heart Rate/physiology , Reproducibility of Results , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...