Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 18(1): 209-223, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33991043

ABSTRACT

Evaluating the spatiotemporal patterns of carbon dynamics is critical for both understanding the role of forest ecosystems in the carbon cycle and developing effective forest policies to mitigate the impacts of climate change. This study analyzes the effects of spatiotemporal changes on carbon dynamics based on landscape structure for the Hisar Planning Unit, Turkey, using forest inventory data between 1973 and 2015. The total carbon stock increased from 1434.49 Gg in 1973 to 1919.37 Gg in 2015, an increase of 33.8%. The mean annual carbon storage was 11.54 Gg · year-1 , including 4.28 Gg · year-1 in biomass and 7.26 Gg · year-1 in soil over four decades. The most significant carbon pool in the total carbon stock was from the soil, with 71.6%, 70.7%, and 69.4% of the total carbon storage in 1973, 1998, and 2015, respectively. Pure pine stands, overmature development stages, fully covered stands, and older forests were the prevailing factors affecting carbon density. The conversion from degraded (1442.47 ha, 14.85%), coppice (157.04 ha, 3.9%), and non-forest lands (1412.91 ha, 5.2%) to productive forests with afforestation or restoration activities significantly boosted the total carbon storage. Furthermore, increasing awareness and stewardship in forest management coupled with improved economic well-being reduced the pressure on the forests, leading to an increase in the quality of forest structure. These changes in landscape structure resulted in the heterogeneous distribution of carbon dynamics. In conclusion, understanding the spatiotemporal patterns of carbon dynamics is crucial for both forest managers and policy-makers in developing sustainable forest management practices and climate mitigation strategies for ecological sustainability and climate-smart forestry. Integr Environ Assess Manag 2022;18:209-223. © 2021 SETAC.


Subject(s)
Carbon , Ecosystem , Biomass , Carbon/analysis , Forests , Trees , Turkey
2.
J Cell Physiol ; 236(12): 8148-8159, 2021 12.
Article in English | MEDLINE | ID: mdl-34192357

ABSTRACT

A number of studies have examined the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC-specific Rab11a a recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL-6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell-originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2 D3 or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC-specific Rab11a knockout mice (Rab11aΔIEC ). 1,25(OH)2 D3 administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle-injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF-κB (p65) in the knockout intestinal epithelia, reduced tissue-resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.


Subject(s)
Epithelial Cells/drug effects , Inflammation/drug therapy , Intestines/drug effects , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Animals , Cytokines/metabolism , Diet , Dietary Supplements , Intestinal Mucosa/drug effects , Mice
3.
Genet Mol Res ; 15(1)2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26909982

ABSTRACT

Effective breeding programs based on genetic diversity are needed to broaden the genetic basis of rice (Oryza sativa L.) in Turkey. In this study, 81 commercial varieties from seven countries were studied in order to estimate the genomic relationships among them using nine inter-primer binding site (iPBS)-retrotransposon and 17 simple-sequence repeat (SSR) markers. A total of 59 alleles for the SSR markers and 96 bands for the iPBS-retrotransposon markers were detected, with an average of 3.47 and 10.6 per locus, respectively. Each of the varieties could be unequivocally identified by the SSR and iPBS-retrotransposon profiles. The iPBS-retrotransposon- and SSR-based clustering were identical and closely mirrored each other, with a significantly high correlation (r = 0.73). A neighbor-joining cluster based on the combined SSR and iPBS-retrotransposon data divided the rice varieties into three clusters. The population structure was determined using the STRUCTURE software, and three populations (K = 3) were identified among the varieties studied, showing that the diversity harbored by Turkish rice varieties is low. The results indicate that iPBS-retrotransposon markers are a very powerful technique to determine the genetic diversity of rice varieties.


Subject(s)
Genetic Variation , Genetics, Population , Microsatellite Repeats , Oryza/genetics , Phylogeny , Retroelements , Alleles , Binding Sites , Cluster Analysis , DNA Primers/genetics , Genetic Markers , Genotype , Oryza/classification , Plant Breeding , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...