Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Data ; 9(1): 58, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173186

ABSTRACT

Reliable estimates of the impacts of climate change on crop production are critical for assessing the sustainability of food systems. Global, regional, and site-specific crop simulation studies have been conducted for nearly four decades, representing valuable sources of information for climate change impact assessments. However, the wealth of data produced by these studies has not been made publicly available. Here, we develop a global dataset by consolidating previously published meta-analyses and data collected through a new literature search covering recent crop simulations. The new global dataset builds on 8703 simulations from 202 studies published between 1984 and 2020. It contains projected yields of four major crops (maize, rice, soybean, and wheat) in 91 countries under major emission scenarios for the 21st century, with and without adaptation measures, along with geographical coordinates, current temperature and precipitation levels, projected temperature and precipitation changes. This dataset provides a solid basis for a quantitative assessment of the impacts of climate change on crop production and will facilitate the rapidly developing data-driven machine learning applications.

2.
Nat Commun ; 12(1): 1235, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623028

ABSTRACT

Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30-47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.

3.
Glob Chang Biol ; 26(10): 5942-5964, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32628332

ABSTRACT

Smallholder farmers in sub-Saharan Africa (SSA) currently grow rainfed maize with limited inputs including fertilizer. Climate change may exacerbate current production constraints. Crop models can help quantify the potential impact of climate change on maize yields, but a comprehensive multimodel assessment of simulation accuracy and uncertainty in these low-input systems is currently lacking. We evaluated the impact of varying [CO2 ], temperature and rainfall conditions on maize yield, for different nitrogen (N) inputs (0, 80, 160 kg N/ha) for five environments in SSA, including cool subhumid Ethiopia, cool semi-arid Rwanda, hot subhumid Ghana and hot semi-arid Mali and Benin using an ensemble of 25 maize models. Models were calibrated with measured grain yield, plant biomass, plant N, leaf area index, harvest index and in-season soil water content from 2-year experiments in each country to assess their ability to simulate observed yield. Simulated responses to climate change factors were explored and compared between models. Calibrated models reproduced measured grain yield variations well with average relative root mean square error of 26%, although uncertainty in model prediction was substantial (CV = 28%). Model ensembles gave greater accuracy than any model taken at random. Nitrogen fertilization controlled the response to variations in [CO2 ], temperature and rainfall. Without N fertilizer input, maize (a) benefited less from an increase in atmospheric [CO2 ]; (b) was less affected by higher temperature or decreasing rainfall; and (c) was more affected by increased rainfall because N leaching was more critical. The model intercomparison revealed that simulation of daily soil N supply and N leaching plays a crucial role in simulating climate change impacts for low-input systems. Climate change and N input interactions have strong implications for the design of robust adaptation approaches across SSA, because the impact of climate change in low input systems will be modified if farmers intensify maize production with balanced nutrient management.


Subject(s)
Climate Change , Zea mays , Fertilizers , Mali , Nitrogen
4.
Nat Food ; 1(12): 775-782, 2020 Dec.
Article in English | MEDLINE | ID: mdl-37128059

ABSTRACT

Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.

5.
PLoS One ; 14(9): e0221862, 2019.
Article in English | MEDLINE | ID: mdl-31525247

ABSTRACT

Global gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.


Subject(s)
Crop Production/methods , Models, Statistical , Climate , Crop Production/statistics & numerical data , Crops, Agricultural/growth & development , Soil/chemistry , Uncertainty
6.
Sci Data ; 6(1): 50, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068583

ABSTRACT

The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of crop model simulations covering the global ice-free land surface. The dataset consists of annual data fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three different management harmonization levels. Each group submitted data for up to 15 different crops and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses and understanding of crop model performance, potential relationships between productivity and environmental impacts, and insights on how to further improve global gridded crop model frameworks. We describe dataset characteristics and individual model setup narratives.

7.
Nat Commun ; 10(1): 1005, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824763

ABSTRACT

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

8.
PLoS One ; 13(6): e0198748, 2018.
Article in English | MEDLINE | ID: mdl-29949598

ABSTRACT

Agricultural production must increase to feed a growing and wealthier population, as well as to satisfy increasing demands for biomaterials and biomass-based energy. At the same time, deforestation and land-use change need to be minimized in order to preserve biodiversity and maintain carbon stores in vegetation and soils. Consequently, agricultural land use needs to be intensified in order to increase food production per unit area of land. Here we use simulations of AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 to assess implications of input-driven intensification (water, nutrients) on crop yield and yield stability, which is an important aspect in food security. We find region- and crop-specific responses for the simulated period 1980-2009 with broadly increasing yield variability under additional nitrogen inputs and stabilizing yields under additional water inputs (irrigation), reflecting current patterns of water and nutrient limitation. The different models of the GGCMI ensemble show similar response patterns, but model differences warrant further research on management assumptions, such as variety selection and soil management, and inputs as well as on model implementation of different soil and plant processes, such as on heat stress, and parameters. Higher variability in crop productivity under higher fertilizer input will require adequate buffer mechanisms in trade and distribution/storage networks to avoid food price volatility.


Subject(s)
Crops, Agricultural/drug effects , Crops, Agricultural/growth & development , Internationality , Nutrients/pharmacology , Water/pharmacology , Dose-Response Relationship, Drug , Models, Statistical
9.
Nat Commun ; 8: 13931, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102202

ABSTRACT

High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.

10.
Earths Future ; 5(6): 605-616, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30377624

ABSTRACT

Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the US. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

11.
Glob Chang Biol ; 20(7): 2301-20, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24395589

ABSTRACT

Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 µmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.


Subject(s)
Climate Change , Water/metabolism , Zea mays/growth & development , Zea mays/metabolism , Carbon Dioxide/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Geography , Models, Biological , Temperature
12.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24344270

ABSTRACT

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Subject(s)
Conservation of Natural Resources/methods , Environment , Global Warming/statistics & numerical data , Models, Theoretical , Public Policy , Agriculture/statistics & numerical data , Computer Simulation , Ecosystem , Geography , Global Warming/economics , Humans , Malaria/epidemiology , Temperature , Water Supply/statistics & numerical data
13.
Proc Natl Acad Sci U S A ; 111(9): 3239-44, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24344283

ABSTRACT

We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.


Subject(s)
Agricultural Irrigation/methods , Agriculture/methods , Climate Change , Models, Theoretical , Water Supply/statistics & numerical data , Agricultural Irrigation/economics , Agriculture/economics , Carbon Dioxide/analysis , Computer Simulation , Forecasting
14.
Proc Natl Acad Sci U S A ; 111(9): 3274-9, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24344285

ABSTRACT

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.


Subject(s)
Agriculture/economics , Climate Change , Crops, Agricultural/growth & development , Models, Economic , Carbon Dioxide/analysis , Commerce/statistics & numerical data , Computer Simulation , Forecasting , Humans
15.
Proc Natl Acad Sci U S A ; 111(9): 3268-73, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24344314

ABSTRACT

Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.


Subject(s)
Agriculture/methods , Climate Change , Crops, Agricultural/growth & development , Models, Theoretical , Nitrogen/analysis , Agriculture/statistics & numerical data , Computer Simulation , Forecasting , Geography , Risk Assessment , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...