Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
mBio ; : e0072724, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975793

ABSTRACT

Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular parasite that infects warm-blooded vertebrates across the world. In humans, seropositivity rates of T. gondii range from 10% to 90% across communities. Despite its prevalence, few studies address how T. gondii infection changes the metabolism of host cells. In this study, we investigate how T. gondii manipulates the host cell metabolic environment by monitoring the metabolic response over time using noninvasive autofluorescence lifetime imaging of single cells, metabolite analysis, extracellular flux analysis, and reactive oxygen species (ROS) production. Autofluorescence lifetime imaging indicates that infected host cells become more oxidized and have an increased proportion of bound NAD(P)H compared to uninfected controls. Over time, infected cells also show decreases in levels of intracellular glucose and lactate, increases in oxygen consumption, and variability in ROS production. We further examined changes associated with the pre-invasion "kiss and spit" process using autofluorescence lifetime imaging, which also showed a more oxidized host cell with an increased proportion of bound NAD(P)H over 48 hours compared to uninfected controls, suggesting that metabolic changes in host cells are induced by T. gondii kiss and spit even without invasion.IMPORTANCEThis study sheds light on previously unexplored changes in host cell metabolism induced by T. gondii infection using noninvasive, label-free autofluorescence imaging. In this study, we use optical metabolic imaging (OMI) to measure the optical redox ratio (ORR) in conjunction with fluorescence lifetime imaging microscopy (FLIM) to noninvasively monitor single host cell response to T. gondii infection over 48 hours. Collectively, our results affirm the value of using autofluorescence lifetime imaging to noninvasively monitor metabolic changes in host cells over the time course of a microbial infection. Understanding this metabolic relationship between the host cell and the parasite could uncover new treatment and prevention options for T. gondii infections worldwide.

2.
Adv Funct Mater ; 34(13)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38706986

ABSTRACT

Collagen fibers in the 3D tumor microenvironment (TME) exhibit complex alignment landscapes that are critical in directing cell migration through a process called contact guidance. Previous in vitro work studying this phenomenon has focused on quantifying cell responses in uniformly aligned environments. However, the TME also features short-range gradients in fiber alignment that result from cell-induced traction forces. Although the influence of graded biophysical taxis cues is well established, cell responses to physiological alignment gradients remain largely unexplored. In this work, fiber alignment gradients in biopsy samples are characterized and recreated using a new microfluidic biofabrication technique to achieve tunable sub-millimeter to millimeter scale gradients. This study represents the first successful engineering of continuous alignment gradients in soft, natural biomaterials. Migration experiments on graded alignment show that HUVECs exhibit increased directionality, persistence, and speed compared to uniform and unaligned fiber architectures. Similarly, patterned MDA-MB-231 aggregates exhibit biased migration toward increasing fiber alignment, suggesting a role for alignment gradients as a taxis cue. This user-friendly approach, requiring no specialized equipment, is anticipated to offer new insights into the biophysical cues that cells interpret as they traverse the extracellular matrix, with broad applicability in healthy and diseased tissue environments.

3.
Article in English | MEDLINE | ID: mdl-37885458

ABSTRACT

Human stem cells provide emerging methods for drug screening, disease modeling, and personalized patient therapies. To meet this growing demand for scale-up, stem cell manufacturing methods must be streamlined with continuous monitoring technologies and automated feedback to optimize growth conditions for high production and consistency. Label-free optical imaging and sensing, including multiphoton microscopy, Raman spectroscopy, and low-cost methods such as phase and transmitted light microscopy, can provide rapid, repeatable, and non-invasive monitoring of stem cells throughout cell differentiation and maturation. Machine learning algorithms trained on label-free optical imaging and sensing features could identify viable cells and predict optimal manufacturing conditions. These techniques have the potential to streamline stem cell manufacturing and accelerate their use in regenerative medicine.

4.
bioRxiv ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37502844

ABSTRACT

In the tumor microenvironment (TME), collagen fibers facilitate tumor cell migration through the extracellular matrix. Previous studies have focused on studying the responses of cells on uniformly aligned or randomly aligned collagen fibers. However, the in vivo environment also features spatial gradients in alignment, which arise from the local reorganization of the matrix architecture due to cell-induced traction forces. Although there has been extensive research on how cells respond to graded biophysical cues, such as stiffness, porosity, and ligand density, the cellular responses to physiological fiber alignment gradients have been largely unexplored. This is due, in part, to a lack of robust experimental techniques to create controlled alignment gradients in natural materials. In this study, we image tumor biopsy samples and characterize the alignment gradients present in the TME. To replicate physiological gradients, we introduce a first-of-its-kind biofabrication technique that utilizes a microfluidic channel with constricting and expanding geometry to engineer 3D collagen hydrogels with tunable fiber alignment gradients that range from sub-millimeter to millimeter length scales. Our modular approach allows easy access to the microengineered gradient gels, and we demonstrate that HUVECs migrate in response to the fiber architecture. We provide preliminary evidence suggesting that MDA-MB-231 cell aggregates, patterned onto a specific location on the alignment gradient, exhibit preferential migration towards increasing alignment. This finding suggests that alignment gradients could serve as an additional taxis cue in the ECM. Importantly, our study represents the first successful engineering of continuous gradients of fiber alignment in soft, natural materials. We anticipate that our user-friendly platform, which needs no specialized equipment, will offer new experimental capabilities to study the impact of fiber-based contact guidance on directed cell migration.

5.
J Biomed Opt ; 28(6): 066502, 2023 06.
Article in English | MEDLINE | ID: mdl-37351197

ABSTRACT

Significance: Fluorescence lifetime imaging microscopy (FLIM) of the metabolic co-enzyme nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] is a popular method to monitor single-cell metabolism within unperturbed, living 3D systems. However, FLIM of NAD(P)H has not been performed in a light-sheet geometry, which is advantageous for rapid imaging of cells within live 3D samples. Aim: We aim to design, validate, and demonstrate a proof-of-concept light-sheet system for NAD(P)H FLIM. Approach: A single-photon avalanche diode camera was integrated into a light-sheet microscope to achieve optical sectioning and limit out-of-focus contributions for NAD(P)H FLIM of single cells. Results: An NAD(P)H light-sheet FLIM system was built and validated with fluorescence lifetime standards and with time-course imaging of metabolic perturbations in pancreas cancer cells with 10 s integration times. NAD(P)H light-sheet FLIM in vivo was demonstrated with live neutrophil imaging in a larval zebrafish tail wound also with 10 s integration times. Finally, the theoretical and practical imaging speeds for NAD(P)H FLIM were compared across laser scanning and light-sheet geometries, indicating a 30× to 6× acquisition speed advantage for the light sheet compared to the laser scanning geometry. Conclusions: FLIM of NAD(P)H is feasible in a light-sheet geometry and is attractive for 3D live cell imaging applications, such as monitoring immune cell metabolism and migration within an organism.


Subject(s)
NAD , Pancreatic Neoplasms , Animals , NAD/metabolism , Zebrafish , Microscopy, Fluorescence/methods , Photons , Optical Imaging/methods
6.
Biomaterials ; 298: 122136, 2023 07.
Article in English | MEDLINE | ID: mdl-37178589

ABSTRACT

Regional metastasis of head and neck cancer (HNC) is prevalent (approximately 50% of patients at diagnosis), yet the underlying drivers and mechanisms of lymphatic spread remain unclear. The complex tumor microenvironment (TME) of HNC plays a crucial role in disease maintenance and progression; however, the contribution of the lymphatics remains underexplored. We created a primary patient cell derived microphysiological system that incorporates cancer-associated-fibroblasts from patients with HNC alongside a HNC tumor spheroid and a lymphatic microvessel to create an in vitro TME platform to investigate metastasis. Screening of soluble factor signaling identified novel secretion of macrophage migration inhibitory factor (MIF) by lymphatic endothelial cells conditioned in the TME. Importantly, we also observed patient-to-patient heterogeneity in cancer cell migration similar to the heterogeneity observed in clinical disease. Optical metabolic imaging at the single cell level identified a distinct metabolic profile of migratory versus non-migratory HNC cells in a microenvironment dependent manner. Additionally, we report a unique role of MIF in increasing HNC reliance on glycolysis over oxidative phosphorylation. This multicellular, microfluidic platform expands the tools available to explore HNC biology in vitro through multiple orthogonal outputs and establishes a system with enough resolution to visualize and quantify patient-to-patient heterogeneity.


Subject(s)
Head and Neck Neoplasms , Macrophage Migration-Inhibitory Factors , Humans , Macrophage Migration-Inhibitory Factors/metabolism , Monocytes/metabolism , Endothelial Cells/metabolism , Cell Movement , Cell Line, Tumor , Tumor Microenvironment
7.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778488

ABSTRACT

Single photon avalanche diode (SPAD) array sensors can increase the imaging speed for fluorescence lifetime imaging microscopy (FLIM) by transitioning from laser scanning to widefield geometries. While a SPAD camera in epi-fluorescence geometry enables widefield FLIM of fluorescently labeled samples, label-free imaging of single-cell autofluorescence is not feasible in an epi-fluorescence geometry because background fluorescence from out-of-focus features masks weak cell autofluorescence and biases lifetime measurements. Here, we address this problem by integrating the SPAD camera in a light sheet illumination geometry to achieve optical sectioning and limit out-of-focus contributions, enabling fast label-free FLIM of single-cell NAD(P)H autofluorescence. The feasibility of this NAD(P)H light sheet FLIM system was confirmed with time-course imaging of metabolic perturbations in pancreas cancer cells with 10 s integration times, and in vivo NAD(P)H light sheet FLIM was demonstrated with live neutrophil imaging in a zebrafish tail wound, also with 10 s integration times. Finally, the theoretical and practical imaging speeds for NAD(P)H FLIM were compared across laser scanning and light sheet geometries, indicating a 30X to 6X frame rate advantage for the light sheet compared to the laser scanning geometry. This light sheet system provides faster frame rates for 3D NAD(P)H FLIM for live cell imaging applications such as monitoring single cell metabolism and immune cell migration throughout an entire living organism.

8.
Cancers (Basel) ; 14(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35205605

ABSTRACT

Breast cancer is the most common invasive cancer in women, with most deaths attributed to metastases. Neoadjuvant chemotherapy (NACT) may be prescribed prior to surgical removal of the tumor for subsets of breast cancer patients but can have diverse undesired and off-target effects, including the increased appearance of the 'tumor microenvironment of metastasis', image-based multicellular signatures that are prognostic of breast tumor metastasis. To assess whether NACT can induce changes in two other image-based prognostic/predictive signatures derived from tumor collagen, we quantified second-harmonic generation (SHG) directionality and fiber alignment in formalin-fixed, paraffin-embedded sections of core needle biopsies and primary tumor excisions from 22 human epidermal growth factor receptor 2-overexpressing (HER2+) and 22 triple-negative breast cancers. In both subtypes, we found that SHG directionality (i.e., the forward-to-backward scattering ratio, or F/B) is increased by NACT in the bulk of the tumor, but not the adjacent tumor-stroma interface. Overall collagen fiber alignment is increased by NACT in triple-negative but not HER2+ breast tumors. These results suggest that NACT impacts the collagenous extracellular matrix in a complex and subtype-specific manner, with some prognostic features being unchanged while others are altered in a manner suggestive of a more metastatic phenotype.

9.
BMC Cancer ; 20(1): 1217, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33302909

ABSTRACT

BACKGROUND: Metastases are the leading cause of breast cancer-related deaths. The tumor microenvironment impacts cancer progression and metastatic ability. Fibrillar collagen, a major extracellular matrix component, can be studied using the light scattering phenomenon known as second-harmonic generation (SHG). The ratio of forward- to backward-scattered SHG photons (F/B) is sensitive to collagen fiber internal structure and has been shown to be an independent prognostic indicator of metastasis-free survival time (MFS). Here we assess the effects of heterogeneity in the tumor matrix on the possible use of F/B as a prognostic tool. METHODS: SHG imaging was performed on sectioned primary tumor excisions from 95 untreated, estrogen receptor-positive, lymph node negative invasive ductal carcinoma patients. We identified two distinct regions whose collagen displayed different average F/B values, indicative of spatial heterogeneity: the cellular tumor bulk and surrounding tumor-stroma interface. To evaluate the impact of heterogeneity on F/B's prognostic ability, we performed SHG imaging in the tumor bulk and tumor-stroma interface, calculated a 21-gene recurrence score (surrogate for OncotypeDX®, or S-ODX) for each patient and evaluated their combined prognostic ability. RESULTS: We found that F/B measured in tumor-stroma interface, but not tumor bulk, is prognostic of MFS using three methods to select pixels for analysis: an intensity threshold selected by a blinded observer, a histogram-based thresholding method, and an adaptive thresholding method. Using both regression trees and Random Survival Forests for MFS outcome, we obtained data-driven prediction rules that show F/B from tumor-stroma interface, but not tumor bulk, and S-ODX both contribute to predicting MFS in this patient cohort. We also separated patients into low-intermediate (S-ODX < 26) and high risk (S-ODX ≥26) groups. In the low-intermediate risk group, comprised of patients not typically recommended for adjuvant chemotherapy, we find that F/B from the tumor-stroma interface is prognostic of MFS and can identify a patient cohort with poor outcomes. CONCLUSIONS: These data demonstrate that intratumoral heterogeneity in F/B values can play an important role in its possible use as a prognostic marker, and that F/B from tumor-stroma interface of primary tumor excisions may provide useful information to stratify patients by metastatic risk.


Subject(s)
Breast Neoplasms/ultrastructure , Carcinoma, Ductal, Breast/ultrastructure , Estrogens , Fibrillar Collagens/ultrastructure , Neoplasm Metastasis , Neoplasm Proteins/ultrastructure , Neoplasms, Hormone-Dependent/ultrastructure , Second Harmonic Generation Microscopy , Breast Neoplasms/chemistry , Carcinoma, Ductal, Breast/chemistry , Carcinoma, Ductal, Breast/secondary , Female , Humans , Image Processing, Computer-Assisted , Neoplasms, Hormone-Dependent/chemistry , Prognosis , Risk , Single-Blind Method , Stromal Cells/chemistry , Stromal Cells/ultrastructure , Tumor Microenvironment
10.
Photochem Photobiol ; 96(2): 380-387, 2020 03.
Article in English | MEDLINE | ID: mdl-31883385

ABSTRACT

Noninvasive monitoring of vascularization can potentially diagnose impaired bone healing earlier than current radiographic methods. In this study, a noncontact diffuse correlation tomography (DCT) technique was employed to measure longitudinal blood flow changes during bone healing in a murine femoral fracture model. The three-dimensional distribution of the relative blood flow was quantified from one day pre-fracture to 48 days post-fracture. For three mice, frequent DCT measurements were performed every other day for one week after fracture, and then weekly thereafter. A decrease in blood flow was observed in the bone fracture region at one day post-fracture, followed by a monotonic increase in blood flow beyond the pre-injury baseline until five to seven days post-fracture. For the remaining 12 mice, only weekly DCT measurements were performed. Data collected on a weekly basis show the blood flow for most mice was elevated above baseline during the first two post-fracture weeks, followed by a subsequent decrease. Torsional strength of the excised femurs was measured for all 15 mice after 7 weeks of healing. A metric based on the early blood flow changes shows a statistically significant difference between the high strength group and the low strength group.


Subject(s)
Femoral Fractures/diagnostic imaging , Fracture Healing , Imaging, Three-Dimensional , Regional Blood Flow , Tomography/methods , Animals , Biomechanical Phenomena , Disease Models, Animal , Female , Femur/blood supply , Mice , Mice, Inbred BALB C
11.
J Biomed Opt ; 24(8): 1-9, 2019 08.
Article in English | MEDLINE | ID: mdl-31456385

ABSTRACT

Neoadjuvant chemotherapy (NACT) is routinely administered to subsets of breast cancer patients, including triple negative (TN) or human epidermal growth factor receptor 2-positive (HER2+) cancers. After NACT and subsequent surgical resection, 5% to 30% of patients have no residual invasive carcinoma, termed pathological complete response. Unfortunately, many patients experience little-to-no response after NACT and unnecessarily suffer its side effects. Methods are needed to predict an individual patient's response to NACT. Core needle biopsies, taken before NACT, consist of tumor cells and the surrounding extracellular matrix. We performed second-harmonic generation (SHG) imaging of fibrillar collagen in core needle biopsy sections as a possible predictor of response to NACT. The ratio of forward-to-backward scattering (F/B) SHG was assessed in the "tumor bulk" and "tumor­host interface" in HER2+ and TN core needle biopsy sections. Patient response was classified post-treatment using the Residual Cancer Burden (RCB) score. In HER2+ biopsies, RCB class was associated with F/B derived from the tumor­stromal interface, but not tumor bulk. F/B was not associated with RCB class in TN biopsies. These findings suggest that F/B from needle biopsy sections may be a useful predictor of which patients will respond favorably to NACT, with the potential to help reduce overtreatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Biopsy, Large-Core Needle , Biopsy, Needle , Chemotherapy, Adjuvant , Collagen/chemistry , Extracellular Matrix/chemistry , Female , Humans , Image Processing, Computer-Assisted/methods , Neoadjuvant Therapy , Prognosis , Receptor, ErbB-2 , Scattering, Radiation , Treatment Outcome
12.
J Biomed Opt ; 24(5): 1-14, 2018 11.
Article in English | MEDLINE | ID: mdl-30411553

ABSTRACT

Despite causing permanent hearing loss by damaging inner ear sensory cells, aminoglycosides (AGs) remain one of the most widely used classes of antibiotics in the world. Although the mechanisms of cochlear sensory cell damage are not fully known, reactive oxygen species (ROS) are clearly implicated. Mitochondrial-specific ROS formation was evaluated in acutely cultured murine cochlear explants exposed to gentamicin (GM), a representative ototoxic AG antibiotic. Superoxide (O2·-) and hydrogen peroxide (H2O2) were measured using MitoSOX Red and Dihydrorhodamine 123, respectively, in sensory and supporting cells. A 1-h GM exposure significantly increased O2·- formation in IHCs and increased H2O2 formation in all cell types. At the same time point, GM significantly increased manganese superoxide dismutase (MnSOD) levels while significantly decreasing copper/zinc superoxide dismutase (CuZnSOD) in cochlear sensory cells. This suggests (1) a rapid conversion of highly reactive O2·- to H2O2 during the acute stage of ototoxic antibiotic exposure and (2) that the endogenous antioxidant system is significantly altered by AGs. Fluorescence intensity-based measurements of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and mitochondrial membrane potential were measured to determine if increases in GM-induced ROS production were correlated with changes in mitochondrial metabolism. This project provides a basis for understanding the mechanisms of mitochondrial ROS production in cochlear cells exposed to ototoxic antibiotics. Understanding the nature of ototoxic antibiotic-induced changes in mitochondrial metabolism is critical for developing hearing loss treatment and prevention strategies.


Subject(s)
Aminoglycosides/toxicity , Anti-Bacterial Agents/toxicity , Cochlea/drug effects , Gentamicins/toxicity , NADP/metabolism , Reactive Oxygen Species/metabolism , Animals , Cochlea/cytology , Membrane Potential, Mitochondrial/physiology , Mice , Mitochondria/metabolism , NAD/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...