Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Int J Biometeorol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656350

ABSTRACT

The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA's National Ecological Observatory Network's (NEON's) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON's first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG's kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges.

2.
Nat Food ; 5(2): 158-170, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38168777

ABSTRACT

Air pollution exerts crucial influence on crop yields and impacts regional and global food supplies. Here we employ a statistical model using satellite-based observations and flexible functional forms to analyse the synergistic effects of reductions in ozone and aerosols on China's food security. The model consistently shows that ozone is detrimental to crops, whereas aerosol has variable effects. China's maize, rice and wheat yields are projected to increase by 7.84%, 4.10% and 3.43%, respectively, upon reaching two air quality targets (60 µg m-3 for peak-season ozone and 35 µg m-3 for annual fine particulate matter). Average calories produced from these crops would surge by 4.51%, potentially allowing China to attain grain self-sufficiency 2 years earlier than previously estimated. These results show that ozone pollution control should be a high priority to increase staple crop edible calories, and future stringent air pollution regulations would enhance China's food security.


Subject(s)
Air Pollution , Ozone , Quality Improvement , Air Pollution/prevention & control , Ozone/analysis , Crops, Agricultural , China , Food Security
3.
Wetlands (Wilmington) ; 43(8): 105, 2023.
Article in English | MEDLINE | ID: mdl-38037553

ABSTRACT

Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13157-023-01722-2.

4.
Glob Chang Biol ; 29(23): 6794-6811, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37731366

ABSTRACT

Understanding the controlling mechanisms of soil properties on ecosystem productivity is essential for sustaining productivity and increasing resilience under a changing climate. Here we investigate the control of topsoil depth (e.g., A horizons) on long-term ecosystem productivity. We used nationwide observations (n = 2401) of topsoil depth and multiple scaled datasets of gross primary productivity (GPP) for five ecosystems (cropland, forest, grassland, pasture, shrubland) over 36 years (1986-2021) across the conterminous USA. The relationship between topsoil depth and GPP is primarily associated with water availability, which is particularly significant in arid regions under grassland, shrubland, and cropland (r = .37, .32, .15, respectively, p < .0001). For every 10 cm increase in topsoil depth, the GPP increased by 114 to 128 g C m-2 year-1 in arid regions (r = .33 and .45, p < .0001). Paired comparison of relatively shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil type) constant showed that the positive control of topsoil depth on GPP occurred primarily in cropland (0.73, confidence interval of 0.57-0.84) and shrubland (0.75, confidence interval of 0.40-0.94). The GPP difference between deep and shallow topsoils was small and not statistically significant. Despite the positive control of topsoil depth on productivity in arid regions, its contribution (coefficients: .09-.33) was similar to that of heat (coefficients: .06-.39) but less than that of water (coefficients: .07-.87). The resilience of ecosystem productivity to climate extremes varied in different ecosystems and climatic regions. Deeper topsoils increased stability and decreased the variability of GPP under climate extremes in most ecosystems, especially in shrubland and grassland. The conservation of topsoil in arid regions and improvements of soil depth representation and moisture-retention mechanisms are critical for carbon-sequestration ecosystem services under a changing climate. These findings and relationships should also be included in Earth system models.


Subject(s)
Ecosystem , Grassland , Desert Climate , Soil , Water
5.
Nature ; 616(7958): 740-746, 2023 04.
Article in English | MEDLINE | ID: mdl-37020018

ABSTRACT

Tropical peatlands cycle and store large amounts of carbon in their soil and biomass1-5. Climate and land-use change alters greenhouse gas (GHG) fluxes of tropical peatlands, but the magnitude of these changes remains highly uncertain6-19. Here we measure net ecosystem exchanges of carbon dioxide, methane and soil nitrous oxide fluxes between October 2016 and May 2022 from Acacia crassicarpa plantation, degraded forest and intact forest within the same peat landscape, representing land-cover-change trajectories in Sumatra, Indonesia. This allows us to present a full plantation rotation GHG flux balance in a fibre wood plantation on peatland. We find that the Acacia plantation has lower GHG emissions than the degraded site with a similar average groundwater level (GWL), despite more intensive land use. The GHG emissions from the Acacia plantation over a full plantation rotation (35.2 ± 4.7 tCO2-eq ha-1 year-1, average ± standard deviation) were around two times higher than those from the intact forest (20.3 ± 3.7 tCO2-eq ha-1 year-1), but only half of the current Intergovernmental Panel on Climate Change (IPCC) Tier 1 emission factor (EF)20 for this land use. Our results can help to reduce the uncertainty in GHG emissions estimates, provide an estimate of the impact of land-use change on tropical peat and develop science-based peatland management practices as nature-based climate solutions.


Subject(s)
Forests , Greenhouse Gases , Soil , Wood , Carbon Dioxide/analysis , Greenhouse Gases/analysis , Indonesia , Methane/analysis , Nitrous Oxide/analysis , Wood/chemistry , Uncertainty
6.
Glob Chang Biol ; 29(8): 2313-2334, 2023 04.
Article in English | MEDLINE | ID: mdl-36630533

ABSTRACT

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.


Subject(s)
Ecosystem , Wetlands , Methane/metabolism , Arctic Regions , Soil , Carbon Dioxide/analysis
7.
Commun Earth Environ ; 4(1): 298, 2023.
Article in English | MEDLINE | ID: mdl-38665193

ABSTRACT

Both carbon dioxide uptake and albedo of the land surface affect global climate. However, climate change mitigation by increasing carbon uptake can cause a warming trade-off by decreasing albedo, with most research focusing on afforestation and its interaction with snow. Here, we present carbon uptake and albedo observations from 176 globally distributed flux stations. We demonstrate a gradual decline in maximum achievable annual albedo as carbon uptake increases, even within subgroups of non-forest and snow-free ecosystems. Based on a paired-site permutation approach, we quantify the likely impact of land use on carbon uptake and albedo. Shifting to the maximum attainable carbon uptake at each site would likely cause moderate net global warming for the first approximately 20 years, followed by a strong cooling effect. A balanced policy co-optimizing carbon uptake and albedo is possible that avoids warming on any timescale, but results in a weaker long-term cooling effect.

8.
J Geophys Res Biogeosci ; 127(12): e2022JG007014, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37502709

ABSTRACT

Long-running eddy covariance flux towers provide insights into how the terrestrial carbon cycle operates over multiple timescales. Here, we evaluated variation in net ecosystem exchange (NEE) of carbon dioxide (CO2) across the Chequamegon Ecosystem-Atmosphere Study AmeriFlux core site cluster in the upper Great Lakes region of the USA from 1997 to 2020. The tower network included two mature hardwood forests with differing management regimes (US-WCr and US-Syv), two fen wetlands with varying levels of canopy sheltering and vegetation (US-Los and US-ALQ), and a very tall (400 m) landscape-level tower (US-PFa). Together, they provided over 70 site-years of observations. The 19-tower Chequamegon Heterogenous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 campaign centered around US-PFa provided additional information on the spatial variation of NEE. Decadal variability was present in all long-term sites, but cross-site coherence in interannual NEE in the earlier part of the record became weaker with time as non-climatic factors such as local disturbances likely dominated flux time series. Average decadal NEE at the tall tower transitioned from carbon source to sink to near neutral over 24 years. Respiration had a greater effect than photosynthesis on driving variations in NEE at all sites. Declining snowfall offset potential increases in assimilation from warmer springs, as less-insulated soils delayed start of spring green-up. Higher CO2 increased maximum net assimilation parameters but not total gross primary productivity. Stand-scale sites were larger net sinks than the landscape tower. Clustered, long-term carbon flux observations provide value for understanding the diverse links between carbon and climate and the challenges of upscaling these responses across space.

9.
Nature ; 598(7881): 468-472, 2021 10.
Article in English | MEDLINE | ID: mdl-34552242

ABSTRACT

The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.


Subject(s)
Carbon Cycle , Ecosystem , Plants/metabolism , Water Cycle , Carbon Dioxide/metabolism , Climate , Datasets as Topic , Humidity , Plants/classification , Principal Component Analysis
10.
Nat Commun ; 12(1): 2266, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859182

ABSTRACT

Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.

11.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: mdl-33837072

ABSTRACT

Warming-induced carbon loss through terrestrial ecosystem respiration (Re) is likely getting stronger in high latitudes and cold regions because of the more rapid warming and higher temperature sensitivity of Re (Q 10). However, it is not known whether the spatial relationship between Q 10 and temperature also holds temporally under a future warmer climate. Here, we analyzed apparent Q 10 values derived from multiyear observations at 74 FLUXNET sites spanning diverse climates and biomes. We found warming-induced decline in Q 10 is stronger at colder regions than other locations, which is consistent with a meta-analysis of 54 field warming experiments across the globe. We predict future warming will shrink the global variability of Q 10 values to an average of 1.44 across the globe under a high emission trajectory (RCP 8.5) by the end of the century. Therefore, warming-induced carbon loss may be less than previously assumed because of Q 10 homogenization in a warming world.

12.
Glob Chang Biol ; 27(15): 3582-3604, 2021 08.
Article in English | MEDLINE | ID: mdl-33914985

ABSTRACT

While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.


Subject(s)
Methane , Wetlands , Carbon Dioxide , Ecosystem , Fresh Water , Seasons
13.
Atmos Chem Phys ; 21(2): 951-971, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33613665

ABSTRACT

We apply airborne measurements across three seasons (summer, winter and spring 2017-2018) in a multi-inversion framework to quantify methane emissions from the US Corn Belt and Upper Midwest, a key agricultural and wetland source region. Combing our seasonal results with prior fall values we find that wetlands are the largest regional methane source (32 %, 20 [16-23] Gg/d), while livestock (enteric/manure; 25 %, 15 [14-17] Gg/d) are the largest anthropogenic source. Natural gas/petroleum, waste/landfills, and coal mines collectively make up the remainder. Optimized fluxes improve model agreement with independent datasets within and beyond the study timeframe. Inversions reveal coherent and seasonally dependent spatial errors in the WetCHARTs ensemble mean wetland emissions, with an underestimate for the Prairie Pothole region but an overestimate for Great Lakes coastal wetlands. Wetland extent and emission temperature dependence have the largest influence on prediction accuracy; better representation of coupled soil temperature-hydrology effects is therefore needed. Our optimized regional livestock emissions agree well with the Gridded EPA estimates during spring (to within 7 %) but are ∼25 % higher during summer and winter. Spatial analysis further shows good top-down and bottom-up agreement for beef facilities (with mainly enteric emissions) but larger (∼30 %) seasonal discrepancies for dairies and hog farms (with >40 % manure emissions). Findings thus support bottom-up enteric emission estimates but suggest errors for manure; we propose that the latter reflects inadequate treatment of management factors including field application. Overall, our results confirm the importance of intensive animal agriculture for regional methane emissions, implying substantial mitigation opportunities through improved management.

14.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33026137

ABSTRACT

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Subject(s)
Greenhouse Gases , Atmosphere , Carbon Dioxide/analysis , Ecosystem , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Reproducibility of Results , Respiration , Soil
15.
Glob Chang Biol ; 26(12): 6916-6930, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33022860

ABSTRACT

We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-based T estimates show higher correlation to sap flow-based T than EC-based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystem T permitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.


Subject(s)
Ecosystem , Plant Transpiration , Poaceae , Rain , Soil , Water
16.
Glob Chang Biol ; 26(4): 2477-2495, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31991028

ABSTRACT

Tropical peatlands are a known source of methane (CH4 ) to the atmosphere, but their contribution to atmospheric CH4 is poorly constrained. Since the 1980s, extensive areas of the peatlands in Southeast Asia have experienced land-cover change to smallholder agriculture and forest plantations. This land-cover change generally involves lowering of groundwater level (GWL), as well as modification of vegetation type, both of which potentially influence CH4 emissions. We measured CH4 exchanges at the landscape scale using eddy covariance towers over two land-cover types in tropical peatland in Sumatra, Indonesia: (a) a natural forest and (b) an Acacia crassicarpa plantation. Annual CH4 exchanges over the natural forest (9.1 ± 0.9 g CH4  m-2  year-1 ) were around twice as high as those of the Acacia plantation (4.7 ± 1.5 g CH4  m-2  year-1 ). Results highlight that tropical peatlands are significant CH4 sources, and probably have a greater impact on global atmospheric CH4 concentrations than previously thought. Observations showed a clear diurnal variation in CH4 exchange over the natural forest where the GWL was higher than 40 cm below the ground surface. The diurnal variation in CH4 exchanges was strongly correlated with associated changes in the canopy conductance to water vapor, photosynthetic photon flux density, vapor pressure deficit, and air temperature. The absence of a comparable diurnal pattern in CH4 exchange over the Acacia plantation may be the result of the GWL being consistently below the root zone. Our results, which are among the first eddy covariance CH4 exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CH4 emissions from a globally important ecosystem, provide a more complete estimate of the impact of land-cover change on tropical peat, and develop science-based peatland management practices that help to minimize greenhouse gas emissions.

17.
Environ Pollut ; 255(Pt 1): 113234, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31541810

ABSTRACT

The presence of plant leaves has been shown to lower the risks of health problems by reducing atmospheric particulate matter (PM). Leaf PM accumulation capacity will saturate in the absence of runoff. Rainfall is an effective way for PM to "wash off" into the soil and renew leaf PM accumulation. However, little is known about how PM wash-off varies with PM size and health problems caused by particulate pollution vary with PM size. This study thus used artificial rainfall with six plant species to find out how size-fractioned PM are washed off during rain processes. Total wash-off masses in fine, coarse and large fractions were 0.6-10.3 µg/cm2, 1.0-18.8 µg/cm2 and 4.5-60.1 µg/cm2 respectively. P. orientalis (cypress) and E. japonicus (evergreen broadleaved shrub) had the largest wash-off masses in each fraction during rainfall. P. cerasifera (deciduous broadleaved shrub) had the largest cumulative wash-off rates in each fraction. Rainfall intensity had more influence on wash-off masses and rates of large particles for six species and for small particles in evergreen species, but limited effect on wash-off proportions. Wash-off proportions decreased in large particles and increased in small particles along with rainfall. The results provide information for PM accumulation renewal of plants used for urban greening.


Subject(s)
Particulate Matter/analysis , Plant Leaves/chemistry , Rain , Environmental Monitoring , Environmental Pollution , Plants
18.
Glob Chang Biol ; 25(4): e4-e6, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30614142

ABSTRACT

In our recent study in Global Change Biology (Li et al., ), we examined the relationship between solar-induced chlorophyll fluorescence (SIF) measured from the Orbiting Carbon Observatory-2 (OCO-2) and gross primary productivity (GPP) derived from eddy covariance flux towers across the globe, and we discovered that there is a nearly universal relationship between SIF and GPP across a wide variety of biomes. This finding reveals the tremendous potential of SIF for accurately mapping terrestrial photosynthesis globally.

19.
Glob Chang Biol ; 24(9): 3990-4008, 2018 09.
Article in English | MEDLINE | ID: mdl-29733483

ABSTRACT

Solar-induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite-observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory-2 (OCO-2) provides the first opportunity to examine the SIF-GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO-2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO-2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2  = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2  = 0.57-0.79, p < 0.0001) except evergreen broadleaf forests (R2  = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome-specific SIF-GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO-2 SIF generally had a better performance for predicting GPP than satellite-derived vegetation indices and a light use efficiency model. The universal SIF-GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO-2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.


Subject(s)
Carbon Cycle , Chlorophyll/radiation effects , Ecosystem , Sunlight , Carbon , Environmental Monitoring , Fluorescence , Forests , Photosynthesis , Satellite Imagery
20.
Ecol Appl ; 28(5): 1313-1324, 2018 07.
Article in English | MEDLINE | ID: mdl-29694698

ABSTRACT

A central challenge to understanding how climate anomalies, such as drought and heatwaves, impact the terrestrial carbon cycle, is quantification and scaling of spatial and temporal variation in ecosystem gross primary productivity (GPP). Existing empirical and model-based satellite broadband spectra-based products have been shown to miss critical variation in GPP. Here, we evaluate the potential of high spectral resolution (10 nm) shortwave (400-2,500 nm) imagery to better detect spatial and temporal variations in GPP across a range of ecosystems, including forests, grassland-savannas, wetlands, and shrublands in a water-stressed region. Estimates of GPP from eddy covariance observations were compared against airborne hyperspectral imagery, collected across California during the 2013-2014 HyspIRI airborne preparatory campaign. Observations from 19 flux towers across 23 flight campaigns (102 total image-flux tower pairs) showed GPP to be strongly correlated to a suite of spectral wavelengths and band ratios associated with foliar physiology and chemistry. A partial least squares regression (PLSR) modeling approach was then used to predict GPP with higher validation accuracy (adjusted R2  = 0.71) and low bias (0.04) compared to existing broadband approaches (e.g., adjusted R2  = 0.68 and bias = -5.71 with the Sims et al. model). Significant wavelengths contributing to the PLSR include those previously shown to coincide with Rubisco (wavelengths 1,680, 1,740, and 2,290 nm) and Vcmax (wavelengths 1,680, 1,722, 1,732, 1,760, and 2,300 nm). These results provide strong evidence that advances in satellite spectral resolution offer significant promise for improved satellite-based monitoring of GPP variability across a diverse range of terrestrial ecosystems.


Subject(s)
Droughts , Ecosystem , Remote Sensing Technology/methods , Spectrum Analysis/methods , California , Forests , Grassland , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...