Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 386(1-2): 131-8, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17079093

ABSTRACT

Deciphering the molecular basis of cancer is critical for developing novel diagnostic and therapeutic strategies. To better understand the early molecular events involving osteogenic sarcoma (OGS), we have initiated a program to identify potential tumor suppressor genes. Expression profiling of total RNA from ten normal bone cell lines and eleven OGS-derived cell lines by microarray showed 135-fold lower expression of FRZB/sFRP3 mRNA in OGS cells compared to bone cells; this down-regulation of Frzb/sFRP3 mRNA expression was found to be serum-independent. Subsequently, fourteen OGS biopsy specimens showed nine-fold down-regulation of Frzb/sFRP3 mRNA expression compared to expression in eight normal bone specimens as determined by microarray. FRZB /sFRP3 protein level was also found to be at a very low level in 4/4 OGS cell lines examined. Quantitation by RT-PCR indicated approximately 70% and approximately 90% loss of Frzb/sFRP3 mRNA expression in OGS biopsy specimens and OGS-derived cell lines respectively, compared to expression in bone (p<0.0001). Hybridization experiments of a cDNA microarray containing paired normal and tumor specimens from nineteen different organs did not show any significant difference in the level of Frzb/sFRP3 mRNA expression between the normal and the corresponding tumor tissues. Exogenous expression of FRZB/sFRP3 mRNA in two OGS-derived cell lines lacking endogenous expression of the mRNA produced abundant mRNA from the exogenous gene, eliminating degradation as a possibility for very low level of FRZB/sFRP3 mRNA in OGS specimens. Results from PCR-based experiments suggest that the FRZB/sFRP3 gene is not deleted in OGS cell lines, however, karyotyping shows gross abnormalities involving chromosome 2 (location of the FRZB gene) in five of twelve OGS-derived cell lines. Together, these data suggest a tumor-suppressive potential for FRZB/sFRP3 in OGS.


Subject(s)
Bone Neoplasms/genetics , Carrier Proteins/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/physiology , Glycoproteins/antagonists & inhibitors , Glycoproteins/genetics , Muscle Proteins/antagonists & inhibitors , Osteosarcoma/genetics , Proteins/antagonists & inhibitors , Transcription, Genetic/physiology , Adaptor Proteins, Signal Transducing , Bone Neoplasms/metabolism , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Cell Line, Tumor , Down-Regulation/genetics , Glycoproteins/biosynthesis , Humans , Intracellular Signaling Peptides and Proteins , Muscle Proteins/biosynthesis , Muscle Proteins/genetics , Osteosarcoma/metabolism , Proteins/genetics , Proteins/metabolism
2.
J Theor Biol ; 230(2): 215-25, 2004 Sep 21.
Article in English | MEDLINE | ID: mdl-15302553

ABSTRACT

To better conceptualize the mechanism underlying the evolution of synonymous codons, we have analysed intragenic codon usage in chosen "regions" of some mouse and human genes. We divided a given gene into two regions: one consisting of a trinucleotide repeat (TNR) and the other consisting of the "rest of the coding region" (RCR). Usually, a TNR is composed of a repetitive single codon, which may reflect its frequency in a gene. In contrast, a non-random frequency of a codon in the RCR versus TNR (or vice versa) of a gene should indicate a bias for that codon within the TNR. We examined this scenario by comparing codon frequency between the RCR and the cognate TNR(s) for a set of human and mouse genes. A TNR length of six amino acids or more was used to identify genes from the Genbank database. Twenty nine human and twenty one mouse genes containing TNRs coding for nine different amino acid runs were identified. The ratio of codon frequency in a TNR versus the corresponding RCR was expressed as "fold change" which was also regarded as a measure of codon bias (defined as preferential use either in TNR or in RCR). Chi-square values were then determined from the distribution of codon frequency in a TNR vs. the cognate RCR. At p<0.001, 22% and 27%, respectively, of human and mouse TNRs showed codon bias. Greater than 40% of the TNRs (29 out of 69 in human, and 18 of 42 in mouse) showed codon bias at p<0.05. In addition, we identify eight single-codon TNRs in mouse and ten in human genes. Thus, our results show intragenic codon bias in both mouse and human genes expressed in diverse tissue types. Since our results are independent of the Codon Adaptation Index (CAI) and starvation CAI, and since the tRNA repertoire in a cell or in a tissue is constant, our data suggest that other constraints besides tRNA abundance played a role in creating intragenic codon bias in these genes.


Subject(s)
Amino Acids/genetics , Codon , Gene Frequency , Animals , Computational Biology , Humans , Mice , Trinucleotide Repeats
3.
J Biol Chem ; 277(29): 26113-9, 2002 Jul 19.
Article in English | MEDLINE | ID: mdl-12000751

ABSTRACT

We have previously found that retinoic acid stimulates the expression of protein kinase C alpha (PKC) in B16 mouse melanoma cells. Because it has been reported that PKC can phosphorylate retinoic acid receptor (RAR) and alter its function, we determined whether changes in the level and/or activity of PKC could affect the expression or function of the RAR in B16 melanoma. Using in vivo phosphorylation and band shift techniques, we could not demonstrate that altering PKC activity and/or protein level changed the in vivo phosphorylation of RAR alpha. However activation of PKC resulted in increased RAR alpha protein. Increased receptor protein correlated with a phorbol dibutyrate-stimulated increase in receptor activation function-2 (AF-2)-dependent transcriptional activity. Use of enzyme inhibitors and dominant-negative PKCs indicated that enzyme activity was required for elevation in the RAR alpha. The PKC-mediated increase in RAR alpha was due to a 2.5-fold increase in the half-life of this protein. In contrast, the down-regulation of PKC diminished RAR alpha protein half-life and markedly inhibited AF-2-dependent transcriptional activity. The down-regulation of PKC also inhibited the binding of RAR to a retinoic acid response element and the retinoic acid induction of RAR beta expression. These findings suggest that PKC can influence retinoic acid signaling by altering the stability of RAR protein without directly phosphorylating this receptor.


Subject(s)
Isoenzymes/metabolism , Melanoma/metabolism , Protein Kinase C/metabolism , Receptors, Retinoic Acid/metabolism , Animals , Blotting, Western , Down-Regulation , Enzyme Activation , Mice , Phorbol 12,13-Dibutyrate/pharmacology , Phosphorylation , Protein Kinase C-alpha , Retinoic Acid Receptor alpha , Signal Transduction , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...