Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(25): eabm6504, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35749495

ABSTRACT

Aging has been reported to deteriorate the quantity and quality of mesenchymal stem cells (MSCs), which affect their therapeutic use in regenerative medicine. A dearth of age-related stem cell research further restricts their clinical applications. The present study explores the possibility of using MSCs derived from human gingival tissues (GMSCs) for studying their ex vivo growth characteristics and differentiation potential with respect to donor age. GMSCs displayed decreased in vitro adipogenesis and in vitro and in vivo osteogenesis with age, but in vitro neurogenesis remained unaffected. An increased expression of p53 and SIRT1 with donor age was correlated to their ability of eliminating tumorigenic events through apoptosis or autophagy, respectively. Irrespective of donor age, GMSCs displayed effective immunoregulation and regenerative potential in a mouse model of LPS-induced acute lung injury. Thus, we suggest the potential of GMSCs for designing cell-based immunomodulatory therapeutic approaches and their further extrapolation for acute inflammatory conditions such as acute respiratory distress syndrome and COVID-19.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Animals , Cell Differentiation , Gingiva , Humans , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis
2.
Crit Rev Biomed Eng ; 46(5): 469-493, 2018.
Article in English | MEDLINE | ID: mdl-30806263

ABSTRACT

Tissue engineering has gained attention in the past decade due to its efficient interaction with the host system and potential therapeutic capabilities. Although scaffold-based approaches provide much needed mechanical strength and support to the regenerating tissue, they also invite foreign body reaction initiated by macrophages, causing inflammation and toxicity, and may also sometime interfere with the regeneration of indigenous tissue due to very slow degradation. Therefore, spheroids provide a promising tool for improving cell survival and for preserving cell-to-cell interaction. They have promptly gained popularity because of their ability to provide superior cellular heterogeneity, nutrient and oxygen gradients (replicating the original tissue), matrix deposition, and gene expression profiles. Because of their ability to differentiate into multiple cell lineages, stem cell-based spheroids have opened new avenues for future regenerative medicine. In this review we focus on various methods for fabrication of spheroids from stem cells and their application in regenerative approaches for different tissues/organs.


Subject(s)
Regenerative Medicine/methods , Spheroids, Cellular/cytology , Spheroids, Cellular/physiology , Stem Cells/cytology , Stem Cells/physiology , Tissue Engineering/methods , Animals , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Regenerative Medicine/trends , Spheroids, Cellular/transplantation , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...