Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oral Health ; 5: 1373885, 2024.
Article in English | MEDLINE | ID: mdl-38933119

ABSTRACT

Introduction: Silver(I)-diammine fluoride (SDF) and silver(I)-fluoride (SF) complexes have been successfully employed for the arrest of dental caries for many years. However, to date there are very few studies available reporting on the molecular structural compositional and solution status of these agents [typically applied as highly-concentrated 38% (w/v) solutions]. Here, we explored the solution status and chemical constitution of commercially-available SDF and SF products, and secondly investigated the multicomponent interplay of these products with biomolecules present in intact human whole-mouth salivary supernatants (WMSSs) in vitro. Methods: High-resolution 19F NMR analysis was employed to explore SDF and SF product solutions, and to determine WMSS fluoride (F-) concentrations, whereas ammonia (NH3) release form SDF was tracked by 1H NMR spectroscopy. SEM and thin-film FTIR-ATR analyses were employed to explore the atomic and molecular compositions of sequentially-generated AgCl deposits and chromophoric Ag/AgCl nanoparticles (CSNPs); the time-dependent generation of the latter was followed spectrophotometrically. Results: 19F NMR spectra of aqueous SF solutions contained a very broad F- signal (Δv1/2 70 Hz), demonstrating that much of its solvated F- content was rapidly exchanging with Ag(I) on the NMR timescale, but those of SDF had a much sharper resonance, similar to that of "free" F- (4 Hz). Moreover, further NMR results revealed that a popular SDF product contained high molar excesses of both F- and NH3. Treatment of WMSSs with SDF and SF generated an off-white precipitate, which slowly developed into CSNPs at 23°C; SEM demonstrated high contents of both silver and chloride in this material (ca.1:1 atomic content ratio). FTIR-ATR analysis found that the CSNPs formed contained a range of salivary biomolecules, which appear to encapsulate the Ag/AgCl core (significant thiocyanate contents were also found). In conclusion, NMR results acquired demonstrated that SF, but not SDF, product solutions feature rapidly-exchanging F - between its "free" and Ag(I)-bound forms, and that SDF contains large excesses of both F- and its NH3 ligands. Characterised AgCl deposits and CSNPs were sequentially produced from the interactions of these complexes with WMSS biomolecules. Discussion: In view of their well-known microbicidal and cariostatic properties, the observed autobioconstruction of CSNPs involving salivary catalysis is of much therapeutic significance.

2.
Food Sci Nutr ; 11(7): 4047-4059, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457144

ABSTRACT

Endothelial dysfunction (ED), secondary to diminished nitric oxide (NO) production and oxidative stress, is an early subclinical marker of atherosclerosis. Reduced NO bioavailability enhances the adhesion of monocytes to endothelial cells and promotes atherosclerosis. Elderberry extract (EB) is known to contain high levels of anthocyanins which could exert vascular protective effects. Specifically, we investigated the functional capacity of EB on various markers of ED. Human umbilical vein endothelial cells (HUVEC) were pretreated with EB 50 µg/mL and stimulated with TNF-α 10 ng/mL. Cell viability, apoptosis, oxidative stress; eNOS, Akt, Nrf2, NOX-4, and NF-κB at the protein level were measured. A co-culture model was used to determine whether EB could prevent the adhesion of monocytes (THP-1) to HUVECs. Moreover, the expression of adhesion molecules and pro-inflammatory cytokines were also measured. It was demonstrated that EB prevented TNF-α induced apoptosis and reactive oxygen species production in HUVECs. Additionally, EB upregulated Akt and eNOS activity, and Nrf2 expression in response to TNF-α, whereas it decreased NOX-4 expression and NF-κB activity. EB prevented the adhesion of monocytes to HUVECs, as well as reduced IL-6 and MCP-1 levels, which was associated with inhibition of VCAM-1 expression. Our results demonstrate that EB upregulates key cellular markers of endothelial function and ameliorates markers of ED. EB could be used as a potential nutritional aid for preventing atherosclerosis progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...