Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
COPD ; 20(1): 186-196, 2023 12.
Article in English | MEDLINE | ID: mdl-37395048

ABSTRACT

Computed tomography (CT) total-airway-count (TAC) and airway wall-thickness differ across chronic obstructive pulmonary disease (COPD) severities, but longitudinal insights are lacking. The aim of this study was to evaluate longitudinal CT airway measurements over three-years in ex-smokers. In this prospective convenience sample study, ex-smokers with (n = 50; 13 female; age = 70 ± 9 years; pack-years = 43 ± 26) and without (n = 40; 17 female; age = 69 ± 10 years; pack-years = 31 ± 17) COPD completed CT, 3He magnetic resonance imaging (MRI), and pulmonary function tests at baseline and three-year follow-up. CT TAC, airway wall-area (WA), lumen-area (LA), and wall-area percent (WA%) were generated. Emphysema was quantified as the relative-area-of-the-lung with attenuation < -950 Hounsfield-units (RA950). MRI ventilation-defect-percent (VDP) was also quantified. Differences over time were evaluated using paired-samples t tests. Multivariable prediction models using the backwards approach were generated. After three-years, forced-expiratory-volume in 1-second (FEV1) was not different in ex-smokers with (p = 0.4) and without (p = 0.5) COPD, whereas RA950 was (p < 0.001, p = 0.02, respectively). In ex-smokers without COPD, there was no change in TAC (p = 0.2); however, LA (p = 0.009) and WA% (p = 0.01) were significantly different. In ex-smokers with COPD, TAC (p < 0.001), WA (p = 0.04), LA (p < 0.001), and WA% (p < 0.001) were significantly different. In all ex-smokers, TAC was related to VDP (baseline: ρ = -0.30, p = 0.005; follow-up: ρ = -0.33, p = 0.002). In significant multivariable models, baseline airway wall-thickness was predictive of TAC worsening. After three-years, in the absence of FEV1 worsening, TAC diminished only in ex-smokers with COPD and airway walls were thinner in all ex-smokers. These longitudinal findings suggest that the evaluation of CT airway remodeling may be a useful clinical tool for predicting disease progression and managing COPD.Clinical trial registration: www.clinicaltrials.gov NCT02279329.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Aged , Female , Humans , Middle Aged , Ex-Smokers , Lung/diagnostic imaging , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Emphysema/diagnostic imaging
2.
Phys Med Biol ; 67(22)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36162409

ABSTRACT

Pulmonary functional magnetic resonance imaging (PfMRI) provides a way to non-invasively map and measure the spatial distribution of pulmonary ventilation, perfusion and gas-exchange abnormalities with unprecedented detail of functional processes at the level of airways, alveoli and the alveolar-capillary membrane. Current PfMRI approaches are dominated by hyperpolarized helium-3 (3He) and xenon-129 (129Xe) gases, which both provide rapid (8-15 s) and well-tolerated imaging examinations in patients with severe pulmonary diseases and pediatric populations, whilst employing no ionizing radiation. While a number of review papers summarize the required image acquisition hardware and software requirements needed to enable PfMRI, here we focus on the image analysis and processing methods required for reproducible measurements using hyperpolarized gas ventilation MRI. We start with the transition in the literature from qualitative and subjective scoring systems to quantitative and objective measurements which enable precise quantification of the lung's critical structure-function relationship. We provide an overview of quantitative biomarkers and the relevant respiratory system parameters that may be measured using PfMRI methods, outlining the history of developments in the field, current methods and then knowledge gaps and typical limitations. We focus on hyperpolarized noble gas MR image processing methods used for quantifying ventilation and gas distribution in the lungs, and discuss the utility and applications of imaging biomarkers generated through these techniques. We conclude with a summary of the current and future directions to further the development of image processing methods, and discuss the remaining challenges for potential clinical translation of these approaches and their integration into standard clinical workflows.


Subject(s)
Helium , Magnetic Resonance Imaging , Child , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Image Processing, Computer-Assisted , Pulmonary Ventilation
3.
Radiology ; 305(2): 466-476, 2022 11.
Article in English | MEDLINE | ID: mdl-35762891

ABSTRACT

BACKGROUND: In patients with post-acute COVID-19 syndrome (PACS), abnormal gas-transfer and pulmonary vascular density have been reported, but such findings have not been related to each other or to symptoms and exercise limitation. The pathophysiologic drivers of PACS in patients previously infected with COVID-19 who were admitted to in-patient treatment in hospital (or ever-hospitalized patients) and never-hospitalized patients are not well understood. PURPOSE: To determine the relationship of persistent symptoms and exercise limitation with xenon 129 (129Xe) MRI and CT pulmonary vascular measurements in individuals with PACS. MATERIALS AND METHODS: In this prospective study, patients with PACS aged 18-80 years with a positive polymerase chain reaction COVID-19 test were recruited from a quaternary-care COVID-19 clinic between April and October 2021. Participants with PACS underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLco), 129Xe MRI, and chest CT. Healthy controls had no prior history of COVID-19 and underwent spirometry, DLco, and 129Xe MRI. The 129Xe MRI red blood cell (RBC) to alveolar-barrier signal ratio, RBC area under the receiver operating characteristic curve (AUC), CT volume of pulmonary vessels with cross-sectional area 5 mm2 or smaller (BV5), and total blood volume were quantified. St George's Respiratory Questionnaire, International Physical Activity Questionnaire, and modified Borg Dyspnea Scale measured quality of life, exercise limitation, and dyspnea. Differences between groups were compared with use of Welch t-tests or Welch analysis of variance. Relationships were evaluated with use of Pearson (r) and Spearman (ρ) correlations. RESULTS: Forty participants were evaluated, including six controls (mean age ± SD, 35 years ± 15, three women) and 34 participants with PACS (mean age, 53 years ± 13, 18 women), of whom 22 were never hospitalized. The 129Xe MRI RBC:barrier ratio was lower in ever-hospitalized participants (P = .04) compared to controls. BV5 correlated with RBC AUC (ρ = .44, P = .03). The 129Xe MRI RBC:barrier ratio was related to DLco (r = .57, P = .002) and forced expiratory volume in 1 second (ρ = .35, P = .03); RBC AUC was related to dyspnea (ρ = -.35, P = .04) and International Physical Activity Questionnaire score (ρ = .45, P = .02). CONCLUSION: Xenon 129 (129Xe) MRI measurements were lower in participants previously infected with COVID-19 who were admitted to in-patient treatment in hospital with post-acute COVID-19 syndrome, 34 weeks ± 25 after infection compared to controls. The 129Xe MRI measures were associated with CT pulmonary vascular density, diffusing capacity of the lung for carbon monoxide, exercise capacity, and dyspnea. Clinical trial registration no.: NCT04584671 © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Wild and Collier in this issue.


Subject(s)
COVID-19 , Female , Humans , Middle Aged , Carbon Monoxide , COVID-19/diagnostic imaging , Dyspnea , Lung/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies , Quality of Life , Tomography, X-Ray Computed , Xenon Isotopes , Male , Adolescent , Young Adult , Adult , Aged , Aged, 80 and over , Post-Acute COVID-19 Syndrome
4.
Respirology ; 27(2): 114-133, 2022 02.
Article in English | MEDLINE | ID: mdl-35008127

ABSTRACT

Pulmonary functional MRI (PfMRI) using inhaled hyperpolarized, radiation-free gases (such as 3 He and 129 Xe) provides a way to directly visualize inhaled gas distribution and ventilation defects (or ventilation heterogeneity) in real time with high spatial (~mm3 ) resolution. Both gases enable quantitative measurement of terminal airway morphology, while 129 Xe uniquely enables imaging the transfer of inhaled gas across the alveolar-capillary tissue barrier to the red blood cells. In patients with asthma, PfMRI abnormalities have been shown to reflect airway smooth muscle dysfunction, airway inflammation and remodelling, luminal occlusions and airway pruning. The method is rapid (8-15 s), cost-effective (~$300/scan) and very well tolerated in patients, even in those who are very young or very ill, because unlike computed tomography (CT), positron emission tomography and single-photon emission CT, there is no ionizing radiation and the examination takes only a few seconds. However, PfMRI is not without limitations, which include the requirement of complex image analysis, specialized equipment and additional training and quality control. We provide an overview of the three main applications of hyperpolarized noble gas MRI in asthma research including: (1) inhaled gas distribution or ventilation imaging, (2) alveolar microstructure and finally (3) gas transfer into the alveolar-capillary tissue space and from the tissue barrier into red blood cells in the pulmonary microvasculature. We highlight the evidence that supports a deeper understanding of the mechanisms of asthma worsening over time and the pathologies responsible for symptoms and disease control. We conclude with a summary of approaches that have the potential for integration into clinical workflows and that may be used to guide personalized treatment planning.


Subject(s)
Asthma , Quality of Life , Asthma/diagnostic imaging , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Xenon Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...