Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915497

ABSTRACT

Cytoplasmic dynein-1 (dynein) is a microtubule-associated, minus end-directed motor that traffics hundreds of different cargos. Dynein must discriminate between cargos and traffic them at the appropriate time from the correct cellular region. How dynein's trafficking activity is regulated in time or cellular space remains poorly understood. Here, we identify CCSer2 as the first known protein to gate dynein activity in the spatial dimension. CCSer2 promotes the migration of developing zebrafish primordium cells and of cultured human cells by facilitating the trafficking of cargos that are acted on by cortically localized dynein. CCSer2 inhibits the interaction between dynein and its regulator Ndel1 exclusively at the cell periphery, resulting in localized dynein activation. Our findings suggest that the spatial specificity of dynein is achieved by the localization of proteins that disinhibit Ndel1. We propose that CCSer2 defines a broader class of proteins that activate dynein in distinct microenvironments via Ndel1 inhibition.

2.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-37693451

ABSTRACT

Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.

3.
J Biol Chem ; 299(6): 104735, 2023 06.
Article in English | MEDLINE | ID: mdl-37086789

ABSTRACT

Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.


Subject(s)
Carrier Proteins , Dynactin Complex , Dyneins , Microtubule-Associated Proteins , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Cytoskeleton/metabolism , Dynactin Complex/genetics , Dynactin Complex/metabolism , Dyneins/genetics , Dyneins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Humans , Carrier Proteins/genetics , Carrier Proteins/metabolism
4.
Nat Commun ; 14(1): 1715, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973253

ABSTRACT

Spindle formation in male meiosis relies on the canonical centrosome system, which is distinct from acentrosomal oocyte meiosis, but its specific regulatory mechanisms remain unknown. Herein, we report that DYNLRB2 (Dynein light chain roadblock-type-2) is a male meiosis-upregulated dynein light chain that is indispensable for spindle formation in meiosis I. In Dynlrb2 KO mouse testes, meiosis progression is arrested in metaphase I due to the formation of multipolar spindles with fragmented pericentriolar material (PCM). DYNLRB2 inhibits PCM fragmentation through two distinct pathways; suppressing premature centriole disengagement and targeting NuMA (nuclear mitotic apparatus) to spindle poles. The ubiquitously expressed mitotic counterpart, DYNLRB1, has similar roles in mitotic cells and maintains spindle bipolarity by targeting NuMA and suppressing centriole overduplication. Our work demonstrates that two distinct dynein complexes containing DYNLRB1 or DYNLRB2 are separately used in mitotic and meiotic spindle formations, respectively, and that both have NuMA as a common target.


Subject(s)
Dyneins , Spindle Apparatus , Mice , Animals , Male , Dyneins/genetics , Dyneins/metabolism , Spindle Apparatus/metabolism , Centrosome/metabolism , Meiosis , Metaphase
5.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747695

ABSTRACT

Dynein is the primary minus-end-directed microtubule motor [1]. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex" [2, 3]. The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and adaptor [4, 5]. Ndel1 and its orthologue Nde1 are dynein and Lis1 binding proteins that help control where dynein localizes within the cell [6]. Cell-based assays suggest that Ndel1/Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear [6]. Using purified proteins and quantitative binding assays, we found that Ndel1's C-terminal region contributes to binding to dynein and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in Ndel1's C-terminal domain increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.

6.
Trends Biochem Sci ; 48(4): 315-316, 2023 04.
Article in English | MEDLINE | ID: mdl-36754682

ABSTRACT

In a recent study, Chaaban and Carter use cryo-electron microscopy (cryo-EM) and an innovative data-processing pipeline to determine the first high-resolution structure of the dynein-dynactin-BICDR1 complex assembled on microtubules. The structure of the complex reveals novel stoichiometry and provides new mechanistic insight into dynein function and mechanism.


Subject(s)
Dyneins , Microtubule-Associated Proteins , Dyneins/metabolism , Microtubule-Associated Proteins/analysis , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Cryoelectron Microscopy , Microtubules/chemistry , Microtubules/metabolism , Dynactin Complex/analysis , Dynactin Complex/chemistry , Dynactin Complex/metabolism
7.
Elife ; 122023 01 24.
Article in English | MEDLINE | ID: mdl-36692009

ABSTRACT

The lissencephaly 1 protein, LIS1, is mutated in type-1 lissencephaly and is a key regulator of cytoplasmic dynein-1. At a molecular level, current models propose that LIS1 activates dynein by relieving its autoinhibited form. Previously we reported a 3.1 Å structure of yeast dynein bound to Pac1, the yeast homologue of LIS1, which revealed the details of their interactions (Gillies et al., 2022). Based on this structure, we made mutations that disrupted these interactions and showed that they were required for dynein's function in vivo in yeast. We also used our yeast dynein-Pac1 structure to design mutations in human dynein to probe the role of LIS1 in promoting the assembly of active dynein complexes. These mutations had relatively mild effects on dynein activation, suggesting that there may be differences in how dynein and Pac1/LIS1 interact between yeast and humans. Here, we report cryo-EM structures of human dynein-LIS1 complexes. Our new structures reveal the differences between the yeast and human systems, provide a blueprint to disrupt the human dynein-LIS1 interactions more accurately, and map type-1 lissencephaly disease mutations, as well as mutations in dynein linked to malformations of cortical development/intellectual disability, in the context of the dynein-LIS1 complex.


Subject(s)
Classical Lissencephalies and Subcortical Band Heterotopias , Saccharomyces cerevisiae Proteins , Humans , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Endoribonucleases/metabolism
8.
Elife ; 112022 06 15.
Article in English | MEDLINE | ID: mdl-35703493

ABSTRACT

Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.


Subject(s)
Dyneins , Microtubule-Associated Proteins , Animals , Chromosome Segregation , Dynactin Complex/metabolism , Dyneins/genetics , Dyneins/metabolism , Male , Meiosis , Mice , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism
9.
Front Cell Dev Biol ; 10: 871935, 2022.
Article in English | MEDLINE | ID: mdl-35493069

ABSTRACT

Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein's interaction with cargo and modulate dynein's ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein's regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein's important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1's molecular effect on dynein activity.

10.
Nat Mater ; 20(6): 883-891, 2021 06.
Article in English | MEDLINE | ID: mdl-33479528

ABSTRACT

Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced by walking motors can break dimer interactions and trigger microtubule disassembly. We tested this hypothesis by studying the interplay between microtubules and moving molecular motors in vitro. Our results show that molecular motors can remove tubulin dimers from the lattice and rapidly destroy microtubules. We also found that dimer removal by motors was compensated for by the insertion of free tubulin dimers into the microtubule lattice. This self-repair mechanism allows microtubules to survive the damage induced by molecular motors as they move along their tracks. Our study reveals the existence of coupling between the motion of molecular motors and the renewal of the microtubule lattice.


Subject(s)
Microtubules/metabolism , Molecular Motor Proteins/metabolism , Movement , Models, Biological
11.
Nat Cell Biol ; 22(5): 518-525, 2020 05.
Article in English | MEDLINE | ID: mdl-32341549

ABSTRACT

Cytoplasmic dynein-1 is a molecular motor that drives nearly all minus-end-directed microtubule-based transport in human cells, performing functions that range from retrograde axonal transport to mitotic spindle assembly1,2. Activated dynein complexes consist of one or two dynein dimers, the dynactin complex and an 'activating adaptor', and they show faster velocity when two dynein dimers are present3-6. Little is known about the assembly process of this massive ~4 MDa complex. Here, using purified recombinant human proteins, we uncover a role for the dynein-binding protein LIS1 in promoting the formation of activated dynein-dynactin complexes that contain two dynein dimers. Complexes activated by proteins representing three families of activating adaptors-BicD2, Hook3 and Ninl-all show enhanced motile properties in the presence of LIS1. Activated dynein complexes do not require sustained LIS1 binding for fast velocity. Using cryo-electron microscopy, we show that human LIS1 binds to dynein at two sites on the motor domain of dynein. Our research suggests that LIS1 binding at these sites functions in multiple stages of assembling the motile dynein-dynactin-activating adaptor complex.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Cytoplasmic Dyneins/metabolism , Dynactin Complex/metabolism , Microtubule-Associated Proteins/metabolism , Animals , Carrier Proteins/metabolism , HEK293 Cells , Humans , Mice , Microtubules/metabolism , Protein Binding/physiology , Recombinant Proteins/metabolism
12.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677512

ABSTRACT

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Subject(s)
Active Transport, Cell Nucleus , Prions/chemistry , RNA-Binding Proteins/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Adult , Aged , Animals , Cytoplasm/chemistry , DNA-Binding Proteins/chemistry , Drosophila melanogaster , Female , Green Fluorescent Proteins/chemistry , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Karyopherins/chemistry , Male , Middle Aged , Molecular Chaperones/chemistry , Mutation , Neurodegenerative Diseases/pathology , Protein Domains , RNA-Binding Protein EWS/chemistry , TATA-Binding Protein Associated Factors/chemistry , beta Karyopherins/chemistry
13.
Cell ; 170(6): 1197-1208.e12, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886386

ABSTRACT

Regulation is central to the functional versatility of cytoplasmic dynein, a motor involved in intracellular transport, cell division, and neurodevelopment. Previous work established that Lis1, a conserved regulator of dynein, binds to its motor domain and induces a tight microtubule-binding state in dynein. The work we present here-a combination of biochemistry, single-molecule assays, and cryoelectron microscopy-led to the surprising discovery that Lis1 has two opposing modes of regulating dynein, being capable of inducing both low and high affinity for the microtubule. We show that these opposing modes depend on the stoichiometry of Lis1 binding to dynein and that this stoichiometry is regulated by the nucleotide state of dynein's AAA3 domain. The low-affinity state requires Lis1 to also bind to dynein at a novel conserved site, mutation of which disrupts Lis1's function in vivo. We propose a new model for the regulation of dynein by Lis1.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Cryoelectron Microscopy , Dyneins/chemistry , Humans , Microtubule-Associated Proteins/chemistry , Models, Molecular , Molecular Motor Proteins/metabolism , Protein Domains , Saccharomyces cerevisiae Proteins/chemistry , Sequence Alignment
14.
Elife ; 62017 07 18.
Article in English | MEDLINE | ID: mdl-28718761

ABSTRACT

In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase ('BioID') to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires 'activators', of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos.


Subject(s)
Carrier Proteins/metabolism , Cell Movement , Cytoplasmic Dyneins/metabolism , Dynactin Complex/metabolism , Cell Line , Cytological Techniques/methods , Humans , Microtubules/metabolism , Staining and Labeling/methods
15.
Annu Rev Cell Dev Biol ; 31: 83-108, 2015.
Article in English | MEDLINE | ID: mdl-26436706

ABSTRACT

Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.


Subject(s)
Cytoplasmic Dyneins/metabolism , Animals , Biological Transport/physiology , Humans , Meiosis/physiology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis/physiology , Organelles/metabolism , Organelles/physiology
16.
Mol Cell ; 57(5): 836-849, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25620563

ABSTRACT

The structural basis by which Hsp104 dissolves disordered aggregates and prions is unknown. A single subunit within the Hsp104 hexamer can solubilize disordered aggregates, whereas prion dissolution requires collaboration by multiple Hsp104 subunits. Here, we establish that the poorly understood Hsp104 N-terminal domain (NTD) enables this operational plasticity. Hsp104 lacking the NTD (Hsp104(ΔN)) dissolves disordered aggregates but cannot dissolve prions or be potentiated by activating mutations. We define how Hsp104(ΔN) invariably stimulates Sup35 prionogenesis by fragmenting prions without solubilizing Sup35, whereas Hsp104 couples Sup35 prion fragmentation and dissolution. Volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (hydrolysis transition state mimic), and ADP via small-angle X-ray scattering revealed a peristaltic pumping motion upon ATP hydrolysis, which drives directional substrate translocation through the central Hsp104 channel and is profoundly altered in Hsp104(ΔN). We establish that the Hsp104 NTD enables cooperative substrate translocation, which is critical for prion dissolution and potentiated disaggregase activity.


Subject(s)
Heat-Shock Proteins/chemistry , Protein Multimerization , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Adenylyl Imidodiphosphate/chemistry , Adenylyl Imidodiphosphate/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Microscopy, Electron , Microscopy, Fluorescence , Models, Molecular , Mutation , Peptide Termination Factors/chemistry , Peptide Termination Factors/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Scattering, Small Angle , X-Ray Diffraction
17.
Cell ; 156(1-2): 170-82, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24439375

ABSTRACT

There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Animals , Animals, Genetically Modified , DNA-Binding Proteins/metabolism , Heat-Shock Proteins/chemistry , Humans , Models, Molecular , Mutagenesis , Neurons/cytology , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/therapy , Protein Folding , Protein Structure, Tertiary , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Proteostasis Deficiencies/therapy , RNA-Binding Protein FUS/metabolism , Saccharomyces cerevisiae Proteins/chemistry , alpha-Synuclein/metabolism
18.
J Biol Chem ; 289(2): 848-67, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24280225

ABSTRACT

The homologous hexameric AAA(+) proteins, Hsp104 from yeast and ClpB from bacteria, collaborate with Hsp70 to dissolve disordered protein aggregates but employ distinct mechanisms of intersubunit collaboration. How Hsp104 and ClpB coordinate polypeptide handover with Hsp70 is not understood. Here, we define conserved distal loop residues between middle domain (MD) helix 1 and 2 that are unexpectedly critical for Hsp104 and ClpB collaboration with Hsp70. Surprisingly, the Hsp104 and ClpB MD distal loop does not contact Hsp70 but makes intrasubunit contacts with nucleotide-binding domain 2 (NBD2). Thus, the MD does not invariably project out into solution as in one structural model of Hsp104 and ClpB hexamers. These intrasubunit contacts as well as those between MD helix 2 and NBD1 are different in Hsp104 and ClpB. NBD2-MD contacts dampen disaggregase activity and must separate for protein disaggregation. We demonstrate that ClpB requires DnaK more stringently than Hsp104 requires Hsp70 for protein disaggregation. Thus, we reveal key differences in how Hsp104 and ClpB coordinate polypeptide handover with Hsp70, which likely reflects differential tuning for yeast and bacterial proteostasis.


Subject(s)
Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Heat-Shock Proteins/chemistry , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Binding Sites/genetics , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Endopeptidase Clp , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Hot Temperature , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Scattering, Small Angle , Sequence Homology, Amino Acid , X-Ray Diffraction
19.
Curr Biol ; 23(19): 1844-52, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24035542

ABSTRACT

BACKGROUND: Many unicellular organisms age: as time passes, they divide more slowly and ultimately die. In budding yeast, asymmetric segregation of cellular damage results in aging mother cells and rejuvenated daughters. We hypothesize that the organisms in which this asymmetry is lacking, or can be modulated, may not undergo aging. RESULTS: We performed a complete pedigree analysis of microcolonies of the fission yeast Schizosaccharomyces pombe growing from a single cell. When cells were grown under favorable conditions, none of the lineages exhibited aging, which is defined as a consecutive increase in division time and increased death probability. Under favorable conditions, few cells died, and their death was random and sudden rather than following a gradual increase in division time. Cell death correlated with the inheritance of Hsp104-associated protein aggregates. After stress, the cells that inherited large aggregates aged, showing a consecutive increase in division time and an increased death probability. Their sisters, who inherited little or no aggregates, did not age. CONCLUSIONS: We conclude that S. pombe does not age under favorable growth conditions, but does so under stress. This transition appears to be passive rather than active and results from the formation of a single large aggregate, which segregates asymmetrically at the subsequent cell division. We argue that this damage-induced asymmetric segregation has evolved to sacrifice some cells so that others may survive unscathed after severe environmental stresses.


Subject(s)
Adenosine Triphosphatases/genetics , Asymmetric Cell Division/physiology , Cellular Senescence/physiology , Heat-Shock Proteins/genetics , Schizosaccharomyces/physiology , Stress, Physiological/physiology , Cellular Senescence/genetics , Cellular Structures/cytology , Green Fluorescent Proteins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
20.
Chem Biol ; 19(11): 1400-10, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23177195

ABSTRACT

Structurally distinct, self-templating prion "strains" can encode distinct phenotypes and amplify at different rates depending upon the environment. Indeed, prion strain ensembles can evolve in response to environmental challenges, which makes them highly challenging drug targets. It is not understood how the proteostasis network amplifies one prion strain at the expense of another. Here, we demonstrate that Hsp104 remodels the distinct intermolecular contacts of different synthetic Sup35 prion strains in a way that selectively amplifies prions encoding strong [PSI(+)] and simultaneously eliminates prions encoding weak [PSI(+)]. Hsp104 has reduced ability to fragment prions encoding weak [PSI(+)], but readily converts them to nontemplating forms. By contrast, Hsp104 readily fragments prions encoding strong [PSI(+)], but has reduced ability to eliminate their infectivity. Thus, we illuminate direct mechanisms underpinning how the proteostasis network can drive prion strain selection.


Subject(s)
Heat-Shock Proteins/metabolism , Peptide Termination Factors/metabolism , Prions/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...