Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(51): eadj3822, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134272

ABSTRACT

Emerging quantum technologies hold the promise of unravelling difficult problems ranging from condensed matter to high-energy physics while, at the same time, motivating the search for unprecedented phenomena in their setting. Here, we use a custom-built superconducting qubit ladder to realize non-thermalizing states with rich entanglement structures in the middle of the energy spectrum. Despite effectively forming an "infinite" temperature ensemble, these states robustly encode quantum information far from equilibrium, as we demonstrate by measuring the fidelity and entanglement entropy in the quench dynamics of the ladder. Our approach harnesses the recently proposed type of non-ergodic behavior known as "rainbow scar," which allows us to obtain analytically exact eigenfunctions whose ergodicity-breaking properties can be conveniently controlled by randomizing the couplings of the model without affecting their energy. The on-demand tunability of quantum correlations via disorder allows for in situ control over ergodicity breaking, and it provides a knob for designing exotic many-body states that defy thermalization.

2.
Phys Rev Lett ; 131(11): 110401, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37774274

ABSTRACT

Protecting coherent quantum dynamics from chaotic environment is key to realizations of fragile many-body phenomena and their applications in quantum technology. We present a general construction that embeds a desired periodic orbit into a family of nonintegrable many-body Hamiltonians, whose dynamics is otherwise chaotic. Our construction is based on time-dependent variational principle that projects quantum dynamics onto a manifold of low-entangled states, and it complements earlier approaches for embedding nonthermal eigenstates, known as quantum many-body scars, into thermalizing spectra. By designing terms that suppress "leakage" of the dynamics outside the variational manifold, we engineer families of Floquet models that host exact scarred dynamics, as we illustrate using a driven Affleck-Kennedy-Lieb-Tasaki model and a recent experimental realization of scars in a dimerized superconducting qubit chain.

3.
Phys Rev Lett ; 129(2): 020601, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35867451

ABSTRACT

Recent experimental observation of weak ergodicity breaking in Rydberg atom quantum simulators has sparked interest in quantum many-body scars-eigenstates which evade thermalization at finite energy densities due to novel mechanisms that do not rely on integrability or protection by a global symmetry. A salient feature of some quantum many-body scars is their subvolume bipartite entanglement entropy. In this Letter, we demonstrate that such exact many-body scars also possess extensive multipartite entanglement structure if they stem from an su(2) spectrum generating algebra. We show this analytically, through scaling of the quantum Fisher information, which is found to be superextensive for exact scarred eigenstates in contrast to generic thermal states. Furthermore, we numerically study signatures of multipartite entanglement in the PXP model of Rydberg atoms, showing that extensive quantum Fisher information density can be generated dynamically by performing a global quench experiment. Our results identify a rich multipartite correlation structure of scarred states with significant potential as a resource in quantum enhanced metrology.

4.
Phys Rev Lett ; 126(21): 210601, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34114830

ABSTRACT

Motivated by recent observations of ergodicity breaking due to Hilbert space fragmentation in 1D Fermi-Hubbard chains with a tilted potential [Scherg et al., arXiv:2010.12965], we show that the same system also hosts quantum many-body scars in a regime U≈Δ≫J at electronic filling factor ν=1. We numerically demonstrate that the scarring phenomenology in this model is similar to other known realizations such as Rydberg atom chains, including persistent dynamical revivals and ergodicity-breaking many-body eigenstates. At the same time, we show that the mechanism of scarring in the Fermi-Hubbard model is different from other examples in the literature: the scars originate from a subgraph, representing a free spin-1 paramagnet, which is weakly connected to the rest of the Hamiltonian's adjacency graph. Our work demonstrates that correlated fermions in tilted optical lattices provide a platform for understanding the interplay of many-body scarring and other forms of ergodicity breaking, such as localization and Hilbert space fragmentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...